(2012年1月最新最细)2011全国中考真题解析120考点汇编☆关于坐标轴对称,关于原点对称一、选择题1.(2011四川遂宁,8,4分)点(﹣2,3)关于原点对称的点的坐标是()A、(2,3)B、(-2,-3)C、(2,-3)D、(-3,2)考点:关于原点对称的点的坐标。专题:应用题。分析:平面直角坐标系中任意一点P(x,y),关于原点的对称点是(﹣x,﹣y),即:求关于原点的对称点,横纵坐标都变成相反数.解答:解:∵点(﹣2,3)关于原点对称,∴点(﹣2,3)关于原点对称的点的坐标为(2,﹣3).故选C.点评:本题主要考查了平面直角坐标系中任意一点P(x,y),关于原点的对称点是(﹣x,﹣y),即:求关于原点的对称点,横纵坐标都变成相反数,比较简单.2.(2011.四川雅安,6,3分)点P关于x轴对称点为P1(3,4),则点P的坐标为()A.(3,﹣4)B.(﹣3,﹣4)C.(﹣4,﹣3)D.(﹣3,4)考点:关于x轴、y轴对称的点的坐标。专题:应用题。分析:根据“关于x轴对称的点,横坐标相同,纵坐标互为相反数”即可求解.解答:解:∵关于x轴对称的点,横坐标相同,纵坐标互为相反数,∴点P的坐标为(3,﹣4).故选A.点评:本题考查关于x轴对称的点的坐标的特点,解决本题的关键是掌握好对称点的坐标规律:关于x轴对称的点,横坐标相同,纵坐标互为相反数,比较简单.3.(2011年湖南省湘潭市,6,3分)在平面直角坐标系中,点A(2,3)与点B关于x轴对称,则点B的坐标为()A、(3,2)B、(-2,-3)C、(-2,3)D、(2,-3)专题:应用题.分析:平面直角坐标系中任意一点P(x,y),关于x轴的对称点的坐标是(x,-y),据此即可求得点(2,3)关于x轴对称的点的坐标.解答:解:∵点(2,3)关于x轴对称;∴对称的点的坐标是(2,-3).故选D.点评:本题主要考查了直角坐标系点的对称性质,比较简单.4.(2011浙江宁波,5,3)平面直角坐标系中,与点(2,-3)关于原点中心对称的点是()A、(-3,2)B、(3,-2)C、(-2,3)D、(2,3)考点:关于原点对称的点的坐标。专题:应用题。分析:平面直角坐标系中任意一点P(x,y),关于原点的对称点是(-x,-y).解答:解:点(2,-3)关于原点中心对称的点的坐标是(-2,3).故选C.点评:本题考查了平面直角坐标系中任意一点P(x,y),关于原点的对称点是(-x,-y),比较简单.5.(2011四川遂宁,8,4分)点(﹣2,3)关于原点对称的点的坐标是()A、(2,3)B、(-2,-3)C、(2,-3)D、(-3,2)考点:关于原点对称的点的坐标。专题:应用题。分析:平面直角坐标系中任意一点P(x,y),关于原点的对称点是(﹣x,﹣y),即:求关于原点的对称点,横纵坐标都变成相反数.解答:解:∵点(﹣2,3)关于原点对称,∴点(﹣2,3)关于原点对称的点的坐标为(2,﹣3).故选C.点评:本题主要考查了平面直角坐标系中任意一点P(x,y),关于原点的对称点是(﹣x,﹣y),即:求关于原点的对称点,横纵坐标都变成相反数,比较简单.6.(2011.四川雅安,6,3分)点P关于x轴对称点为P1(3,4),则点P的坐标为()A.(3,﹣4)B.(﹣3,﹣4)C.(﹣4,﹣3)D.(﹣3,4)考点:关于x轴、y轴对称的点的坐标。专题:应用题。分析:根据“关于x轴对称的点,横坐标相同,纵坐标互为相反数”即可求解.解答:解:∵关于x轴对称的点,横坐标相同,纵坐标互为相反数,∴点P的坐标为(3,﹣4).故选A.点评:本题考查关于x轴对称的点的坐标的特点,解决本题的关键是掌握好对称点的坐标规律:关于x轴对称的点,横坐标相同,纵坐标互为相反数,比较简单.7.(2011四川雅安6,3分)点P关于x轴对称点为)4,3(1P,则点P的坐标为()A)4,3(B)4,3(C)3,4(D)4,3(考点:关于x轴、y轴对称的点的坐标。专题:应用题。分析:根据“关于x轴对称的点,横坐标相同,纵坐标互为相反数”即可求解.解答:∵关于x轴对称的点,横坐标相同,纵坐标互为相反数,∴点P的坐标为(3,﹣4).故选A.点评:本题考查关于x轴对称的点的坐标的特点,解决本题的关键是掌握好对称点的坐标规律:关于x轴对称的点,横坐标相同,纵坐标互为相反数,比较简单.二、填空题1.(2011•泰州,13,3分)点P(﹣3,2)关于x轴对称的点P'的坐标是.考点:关于x轴、y轴对称的点的坐标。专题:数形结合。分析:本题须根据关于x轴、y轴对称的点的坐标的特点和点P的坐标即可求出点P'的坐标.解答:解:∵P(﹣3,2)关于x轴对称的点P'的坐标是(﹣3,﹣2)故答案为(﹣3,﹣2).点评:本题主要考查了关于x轴、y轴对称的点的坐标的特点,解题时要结合已知条件得出结果是本题的关键.2.(2011•青海)若点A(2,a)关于x轴的对称点是B(b,﹣3),则ab的值是6.考点:关于x轴、y轴对称的点的坐标。专题:应用题。分析:根据关于x轴对称的点,横坐标相同,纵坐标互为相反数得出a,b的值,从而得出ab.解答:解:∵点A(2,a)关于x轴的对称点是B(b,﹣3),∴a=3,b=2,∴ab=6.故答案为6.点评:本题主要考查了关于x轴对称的点,横坐标相同,纵坐标互为相反数,比较简单.3.(2011•德州,9,4分)点(1,2)关于原点的对称点的坐标为.考点:关于原点对称的点的坐标。分析:由关于原点对称的点,横坐标与纵坐标都互为相反数可知:点(1,2)关于原点的对称点的坐标.解答:解:因为关于原点对称的点,横坐标与纵坐标都互为相反数,所以:点(1,2)关于原点的对称点的坐标为(﹣1,﹣2).点评:解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.4.(2011浙江宁波,13,3)实数27的立方根是3.如果点P(4,-5)和点Q(a,b)关于原点对称,则a的值为-4.考点:关于原点对称的点的坐标;立方根。专题:计算题;数形结合。分析:找到立方等于27的数即为27的立方根,根据两点关于原点对称,横纵坐标均为相反数即可得出结果.解答:解:∵33=27,∴27的立方根是3,∵点P(4,-5)和点Q(a,b)关于原点对称,∴a=-4,b=5,故答案为:3,-4.点评:本题考查了求一个数的立方根,用到的知识点为:开方与乘方互为逆运算,以及在平面直角坐标系中,两点关于原点对称,横纵坐标均为相反数,难度适中.5.(2011梧州,18,3分)如图,在平面直角坐标系中,对△ABC进行循环往复的轴对称或中心对称变换,若原来点A坐标是(a,b),则经过第2011次变换后所得的A点坐标是(a,﹣b).考点:坐标与图形变化-旋转;坐标与图形变化-对称。专题:规律型。分析:经过观察可得每3次变换为一个循环,看第2011次是第几个图形中的变换即可.解答:解:∵2011÷3=670…1,第一次变换是各对应点关于x轴对称,点A坐标是(a,b),∴经过第2011次变换后所得的A点坐标是(a,﹣b).故答案为(a,﹣b).点评:考查规律性点的变换问题;通过观察得到点的循环变换规律是解决本题的关键.三、解答题1.19.(2011云南保山,19,8分)如图,下列网格中,每个小方格的边长都是1.(1)分别作出四边形ABCD关于x轴、y轴、原点的对称图形;(2)求出四边形ABCD的面积.考点:作图-旋转变换;作图-轴对称变换。分析:(1)分别作A,B,C,D关于x轴、y轴、原点的对称点的坐标,即可得出答案;(2)根据三角形底乘以高除以2,即可得出答案.解答:解(1)如图所示:(2)四边形ABCD的面积=1222122ABDS错误!未找到引用源。.点评:此题主要考查了关于坐标轴以及原点对称的图形作法和三角形面积求法,得出对应点的坐标是解决问题的关键.