1义务教育新课程标准小学数学教师考试题一填空题1数学思想的三个层次是(数学发展)(数学学习)(数学解题)。2学生学习数学的重要方式是(动手实践),(自主探索),(合作交流)。3在数学教学中,应(重视)口算,(加强)估算,(提倡)算法多样化。二判断题1模型在高年级更多的是模式。(×)2课程结构要做到多样性,层次性和可选择性。(√)3《全日制义务教育数学课程标准(实验稿)》将小学的学习时间具体划分为三个学段。(×)三选择题1针对情感态度目标,要进一步提出培养学生的(③)①知识②技能③好奇心和良好的学习习惯2对学生数学学习的评价,应以(①)评价为主。①过程②结果③分数四简答题1.义务教育阶段的数学课程的基本理念是什么?答:实现人人学有价值的数学,人人都能获得必需的数学,不同的人在数学上得到不同的发展。2.知识与技能目标包括哪四个部分?答:数与代数空间与图形统计与概率实践与综合应用五论述题1数学课程标准有其特殊的性质,即教师是“用教科书教,而不是教教科书”。你是怎么理解这句话的,请举例说明?2义务教育新课程标准小学数学教师考试题一填空题1分数的基本性质,是一种(等价)性。2中国数学史,先有(小)数,后有(分)数。3算法多样化,最基本算法是(竖式)计算。二判断题1镜面对称是轴对称图形。(×)。2基数在小学里称为个数。(√)。30是自然数。(√)三选择题1教师在计算中,特别要关注(②)。①计算结果②计算方法2横式算法是从(①)的计算方法。①高位到低位②低位到高位③高位到低位或低位到高位四简答题1小学几何有哪五块?答:直观几何度量几何演绎几何运动几何坐标几何2综合与实践活动分类有哪五类?答:综合应用型活动操作型数学欣赏型数学史话型数学素养型五论述题你是怎样看待统计与概率相结合的?请举例说明。3义务教育新课程标准小学数学教师考试题一填空题1解决问题问题的教学目标是从(学会解题)转向(应用意识)。2相等关系是一种数学(模型)。3列方程解问题的最终目的是培养学生的(方程思想)。二判断题1利用等量关系列出不同的方程,是为了一题多解。(×)2用字母表示数,是学生学习方程的基础。(√)3解决问题可以通过条件提出问题,也可以通过问题找出条件。(√)三选择题1笛卡尔“万能方法”中指出把任何代数问题归结为(①)①解方程②生活问题2在方程实际教学中,(①)①要形成等量意识和检验意识。②只要形成等量意识,可以不形成检验意识四简答题1解决问题要注意以下几点?答:问题情境要适切。教材把握要准确。传统精华要继承。2在方程实际教学中要注意哪两点?答:寻找数量等量关系,形成等量意识。引导自主检验,形成检验意识。五论述题1解决问题的一般方法是什么?请根据自己的教学实际谈谈。答:1进入情境,搜索信息,形成思路。2构思思路3自主探索,独立解决4反思,进行检验。4义务教育新课程标准小学数学教师考试题一填空题1小学数学要重视数学与(生活)的联系。2量角器的本质是(单位角)的集合。3学生的创造是教师引导下的(再创造)。二判断题1在测量教学中要把技能训练课提升为思维发展课(√)2长度的度量教学主要过程是帮助学生找到量具。(×)3测量教学课堂设计的核心思想是揭示本质和动态建构。(√)三选择题1几何起源于(②)对土地的丈量。①希腊②古埃及2学生对角的度量掌握不好的本质原因是(②)①教师讲解不清②学生对量角器的本质和量角方法不明四简答题1如第一阶段初步感知第二阶段直接比较第三阶段间接比较第四阶段用统一单位比较何帮助学生进行长度度量?2解决问题策略的教学方法是什么?在简单的事情中初步体验会逆推是一种策略。从解决问题中提炼解题方法。五论述题。1测量教学课堂设计的核心思想是揭示本质和动态构建,你是如何理解这句话的?请举例说明。5义务教育新课程标准小学数学教师考试题4一填空题1数对包含两个数:(列数)和(行数)。2小学学的平均数是(算术)平均数。3概率的定义分为(理论)概率和(实验)概率。二判断题17至11岁的学生能根据实际操作掌握概率。(√)2平均数是一组数据的代表值,也是平均分的结果。(×)30在平均数中作为计算值,可以省略。(×)三选择题1平均数受(①)数值的影响。①极端②较大2求平均数中人数(②)有小数。①不可以②可以四简答题1图形与位置的教学目标是什么?答:图形与位置的内容是学生培养空间观念的良好载体。图形与位置的学习内容正好对应了坐标的知识。2什么叫统计学?答:统计学是论述收集,分析和解释数学信息的科学。五论述题1平均数受哪些数值的影响?请举例说明。义务教育新课程标准小学数学教师考试题(小学数学)6一、填空题1、创新能力的基础包括(知识掌握)、(思维训练)、(经验积累)。2、数学思维的三个层次是(抽象)、(推理)、(模型)。3、数学课程应面向全体学生,实现(人人学有价值的数学)、(人人都能获得必需的数学)、(不同的人在数学上得到不同的发展)。4、分数与小数的关系从历史进程时间上看,先有(小数),后有(分数),小数产生于(度量)、在(商代)即有记载,分数源于(春秋)记载。5、代数是一种(还原与对消)的科学。6、直观几何教学学生认识的核心是(用平面图形来描述立体图形)。7、“转化”思想是一个重要的数学思想,在古代称之为(出入相补)。8、新课程中解决问题的教学模式是(问题情境)、(建立模型)、(解释应用)。9、列方程解决实际问题的教学最终目标是培养学生的(方程思想)。10、(假设)是创新的起步,(论证)是科学的态度。11、解决问题中的转化策略有(平移)、(旋转)、(画图)、(利用性质)等方法。12、小学阶段说的平均数实际上是指(算术平均数)。它是平均数的一种,是一个(描述一组数据集中趋势)的统计量,是描述统计学中的一个最常用、最重要的统计量之一,也是推断统计学中的最重要的度量之一。13、数学课堂中的数学味,其本质应该是努力引导学生用(数学的视角)去观察,用(数学的语言)去表达,用(数学的思维)去研究、用(数学的方法)去解决问题。14、数学综合与实践活动分为(综合应用型)、(活动操作型)、(数学欣赏型)、(数学史话型)、(数学素养型)。二、判断题1、数学模型在高年级更多的是模式。(×)2、数学教学的评价应建立多维的、多元的评价体系。(√)3、小数的产生不是有了分数才产生的。(√)4、镜面对称是轴对称图形。(×)5、我国于2008年6月15日通过,把算盘定为国家非物质文化遗产。(√)6、在小学渗透了坐标几何学习内容,坐标几何教学的核心思想是确定位置。(×)7、新教材中单独设立了应用题教学的章节。(×)8、解决问题的教学实际上就是应用题的教学。(×)9、成语故事“郑人买履”可以利用在度量教学中设置情境。(√)10、描述统计就是对已有数据进行分析解释,不进行推测。(√)11、教学“平均数”的概念时应把数据的复杂程度、学生的计算速度和准确率作为教学的重点。(×)12、进行可能性的教学时应提供真实的实验和具体的教学情境。(√)三、选择题71、学生的数学问题意识主要包括(ABCD)。A、发现问题;B、提出问题;C、分析问题;D、解决问题;2、启发式教学的主要特征是(BCD)。A、自学提问;B、积极参与;C、交往互动;D、共同发展;3、分数的基本性质具有(D)。A、综合性;B、有效性;C、唯一性;D、等价性;4、弗赖登塔尔的经典案例是(C)。A、七桥问题;B、猜想;C、巨人的手;D、正弦;5、教师在解决问题的教学中要注意(ABCD)。A、情境要适力;B、教材把握要准确;C、传统精华要继承;D、培养反思意识。6、用数方格的方法比较两支铅笔的长短属于(C)。A、直接比较;B、间接比较;C、用统一的单位来比较;D、类比;7、教师在设计练习时要注意(AC)。A、练习目的明确;B、题目越多越好;C、练习层次清楚;D、难度要高;8、在小学有关可能性大小的教学内容中,教学的难点是(D)。A、事件的发生情况;B、表达事件;C、比较事件;D、用分数表示可能性的大小;9、数学基本活动经验的类型包涵(ABCD)。A、直接活动经验;B、间接活动经验;C、设计的活动经验;D、思考的活动经验;四、简答题1、数学课程内容主要安排了哪几方面的学习领域?答:主要安排了数与代数、空间与图形、统计与概率、实践与综合运用四个学习领域。2、小学数学几何学习内容分哪五大块?答:直观几何学、度量几何学、演绎几何学、运动几何学、坐标几何学。3、新课标中第一学段解决问题的教学目标是什么?答:能在教师指导下,从日常生活中发现并提出简单的数学问题;了解同一问题可以有不同的解决办法;有与同伴使用解决问题的体验;初步学会表达解决问题的大致过程和结果。4、进行解决问题的策略教学的基本思路?答:1)在学生熟悉的简单的有趣的事件中提取经验,感受方法;2)继续使用有关方法解决问题,熟悉方法;3)经常让学生体验方法,深刻理解其适用性;4)进行反思总结,形成策略模式。5、简答测量思想的形成的几个阶段?答:1)萌发概念阶段;2)直接比较阶段;3)间接比较阶段;4)借助不统一的单位比的阶段;5)借助统一的单位比较的阶段;6)形成专门的测量工具或者发明一些特定算法的阶段。86、在度量教学中的主要方法有哪些?答:一是让学生逐步找到量具,认识量具,使用量具;二是教学中强调在教师的引导下,以学生自主探索、小组合作与交流为主的教学模式;三是突出学生的主体地位。7、利用“转化”的策略解决问题如何实施教学?答:1)利用直观的情境引发转化;2)回忆转化,体会转化;3)有意识地强调学生用转化,解决问题。8、教学“平均数”的概念重点是什么?答:应该把初步理解平均数的意义作为教学的重点,理解平均数的意义、加深对平均数特点的了解,注重对其统计含义的理解,以及能够在新的问题情境中,准确地运用它去解决问题。9、在小学阶段,对有关概率内容的教学要求是什么?答:1、使学生初步体验有些事件的发生是确定的,有些事件的发生是不确定的。2、能列出简单试验所有可能发生的结果。3、知道事件发生的可能性是有大小的。4、体验事件发生的等可能性以及游戏规则的公平性,会求一些简单事件的可能性。10、小学数学中学生学习“确定位置”,有两条线索是什么?答:一是从学习用类似第几排第几个的方式确定具体情境中一些物体的位置,逐步发展到用数对来确定位置;二是从学习用方位词或方向词描绘物体的相对位置或方向,到结合比例尺来绘制并描述简单的路线图。11、测量教学中把技能训练课提升为思维发展课,应该怎样做?答:1)杜绝测量概念教学中的浅表化、文字化,要追求概念理解的深刻化、本质化。2)杜绝测量单位、工具教学的机械化,要追求教学过程中的生成性。3)杜绝测量公式教学过程中的短平快,要追求在公式推导过程中学生的实质发展。五、论述题1、谈谈在小学数学教学中如何培养学生的数感?答:首先要认识数感在数学教育中的作用。注重培养学生的数感是针对以往数学教育过分强调单一的知识与技能训练、忽视数学与现实的联系、忽视数学的实际运用这种倾向提出来的。数感的建立是提高学生数学素养的重要标志。它有助于培养学生创新精神和实践能力,使学生有更多的机会接触和体验现实问题,表达自己对问题的看法,用不同方式思考和解决问题。另外数感的培养有得于学生提出问题和解决问题能力的提高。其次教师在教学中要加强数感的培养。教学过程中应结合有关内容,把数感的培养体现其中。在数概念的教学中要重视数感的培养,让学生在认识数的过程中,更多地接触和经历有关的情境和实例,在现实背景下感受和体验,会使学生更具体更深刻地把握数概念,建立数感。在数的运算中要加强数感的培养。结合具体的问题选择恰当的算法,会增强对运算实际意义的理解,培养学生的数感。随着学生年龄增长和知识经验的丰富,引导学生探索数、形及实际问题中蕴涵的关系和规律,初步掌握一些有效地表示、处理和交流数量关系以及变化规律的工具,会进一步增强学生的数感。2、请你设计一个统一度量单位的度量教学环节?答:1)让学生学习用古人的方法和老师一起量课桌的长度;2)通过量纸条长度的教学环节,生生互动,让学生相互之间学习尺的使用方法;3)让学生用米尺来量课桌的