九年级数学《二次函数》小结与复习学案

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

学子教育一对一辅导1九年级数学《二次函数》小结与复习学案教学目标:1、理解二次函数的概念,能结合二次函数的图象掌握二次函数的性质;会用描点法画抛物线,能确定抛物线的顶点、对称轴、开口方向,能较熟练地由抛物线y=ax2经过适当平移得到y=a(x-h)2+k的图象;2、会用待定系数法求二次函数的解析式,能较熟练地利用函数的性质解决函数与方程、不等式以及几何图形等知识相结合的综合题;3、掌握二次函数模型的建立,能运用二次函数的知识解决实际问题。教学难点和重点:重点:1、求二次函数的顶点、对称轴,根据图象概括二次函数图象的性质。2、用待定系数法求函数的解析式、运用配方法确定二次函数的特征。3、利用二次函数的知识解决实际问题,并对解决问题的策略进行反思。难点:1、二次函数图象的平移。2、会运用二次函数知识解决有关综合问题。学习方法:在理解的基础上掌握二次函数的知识,多思考,灵活运用所学知识。教学过程:二次函数复习提纲知识要点梳理知识点一:二次函数的定义一般地,如果是常数,,那么叫做的二次函数.知识点二:二次函数的图象与性质1.二次函数由特殊到一般,可分为以下几种形式:①;②;③;④,学子教育一对一辅导2其中;⑤.几种特殊的二次函数的图象特征如下:函数解析式开口方向对称轴顶点坐标当时开口向上当时开口向下(轴)(0,0)(轴)(0,)(,0)(,)()2.抛物线的三要素:开口方向、对称轴、顶点.(1)的符号决定抛物线的开口方向:当时,开口向上;当时,开口向下;相等,抛物线的开口大小、形状相同.(2)平行于轴(或重合)的直线记作.特别地,轴记作直线.3.抛物线中,的作用(1)决定开口方向及开口大小,这与中的完全一样.(2)和共同决定抛物线对称轴的位置.由于抛物线的对称轴是直线,故:①时,对称轴为轴;②(即、同号)时,对称轴在轴左侧;③(即、异号)时,对称轴在轴右侧.(3)的大小决定抛物线与轴交点的位置.当时,,∴抛物线与轴有且只有一个交点(0,):学子教育一对一辅导3①,抛物线经过原点;②,与轴交于正半轴;③,与轴交于负半轴.以上三点中,当结论和条件互换时,仍成立.如抛物线的对称轴在轴右侧,则.4.用待定系数法求二次函数的解析式(1)一般式:.已知图象上三点或三对、的值,通常选择一般式.(2)顶点式:.已知图象的顶点或对称轴,通常选择顶点式.(可以看成的图象平移后所对应的函数.)(3)“交点式”:已知图象与轴的交点坐标、,通常选用交点式:.(由此得根与系数的关系!)5。二次函数图象的平移规律任意抛物线yaxhk()2可以由抛物线yax2经过适当的平移得到,移动规律可简记为:[左加右减,上加下减],具体平移方法如下表所示。知识点三:二次函数与一元二次方程的关系1.函数,当时,得到一元二次方程,那么一元二次方程的解就是二次函数的图象与x轴交点的横坐标,因此二次函数图象与x轴的交点情况决定一元二次方程根的情况.(1)当二次函数的图象与x轴有两个交点,这时,则方程有两个不相等实根;(2)当二次函数的图象与x轴有且只有一个交点,这时,则方学子教育一对一辅导4程有两个相等实根;(3)当二次函数的图象与x轴没有交点,这时,则方程没有实根.2.通过下面表格可以直观地观察到二次函数图象和一元二次方程的关系:的图象的解方程有两个不等实数解方程有两个相等实数解方程没有实数解知识点四:利用二次函数解决实际问题利用二次函数解决实际问题,要建立数学模型,即把实际问题转化为二次函数问题,利用题中存在的公式、内含的规律等相等关系,建立函数关系式,再利用函数的图象及性质去研究问题.在研究实际问题时要注意自变量的取值范围应具有实际意义.利用二次函数解决实际问题的一般步骤是:(1)建立适当的平面直角坐标系;(2)把实际问题中的一些数据与点的坐标联系起来;(3)用待定系数法求出抛物线的关系式;(4)利用二次函数的图象及其性质去分析问题、解决问题.方法指导:1.求抛物线的顶点、对称轴的方法(1)公式法:,∴顶点是,对称轴是直线.(2)配方法:运用配方的方法,将抛物线的解析式化为的形式,得到顶点为(,),对称轴是直线.(3)运用抛物线的对称性:由于抛物线是以对称轴为轴的轴对称图形,所以抛物线上纵坐标相同两点连线的垂直平分线是抛物线的对称轴,对称轴与抛物线的交点是顶点.用配方法求得的顶点,再用公式法或对称性进行验证,才能做到万无一失。学子教育一对一辅导52.直线与抛物线的交点(1)轴与抛物线得交点为(0,).(2)与轴平行的直线与抛物线有且只有一个交点(,).(3)抛物线与轴的交点二次函数的图象与轴的两个交点的横坐标、,是对应一元二次方程的两个实数根.抛物线与轴的交点情况可以由对应的一元二次方程的根的判别式判定:①有两个交点抛物线与轴相交;②有一个交点(顶点在轴上)抛物线与轴相切;③没有交点抛物线与轴相离.(4)平行于轴的直线与抛物线的交点同(3)一样可能有0个交点、1个交点、2个交点.当有2个交点时,两交点的纵坐标相等,设纵坐标为,则横坐标是的两个实数根.(5)一次函数的图像与二次函数的图像的交点,由方程组的解的数目来确定:①方程组有两组不同的解时与有两个交点;②方程组只有一组解时与只有一个交点;③方程组无解时与没有交点.(6)抛物线与轴两交点之间的距离:若抛物线与轴两交点为,由于、是方程的两个根,故学子教育一对一辅导6例1、已知抛物线y1=2x2-8x+k+8和直线y2=mx+1相交于点P(3,4m).(1)求这两个函数的关系式;(2)当x取何值时,抛物线与直线相交,并求交点坐标.解:(1)因为点P(3,4m)在直线y2=mx+1上,所以有4m=3m+1,解得m=1所以y1=x+1,P(3,4).因为点P(3,4)在抛物线y1=2x2-8x+k+8上,所以有4=18-24+k+8解得k=2所以y1=2x2-8x+10(2)依题意,得y=x+1y=2x2-8x+10解这个方程组,得x1=3y1=4,x2=1.5y2=2.5所以抛物线与直线的两个交点坐标分别是(3,4),(1.5,2.5).例2、如图,抛物线y=ax2+bx+c过点A(-1,0),且经过直线y=x-3与坐标轴的两个交点B、C。(1)求抛物线的解析式;(2)求抛物线的顶点坐标,(3)若点M在第四象限内的抛物线上,且OM⊥BC,垂足为D,求点M的坐标。课堂小结:1.归纳二次函数三种解析式的求法:一般式、顶点式、交点式。2.强调二次函数与方程、不等式、三角形,一次函数等知识综合的综合题解题思路。3.常见的数学思想方法:方程思想、转化思想,化归思想、待定系数法、数形结合法等等。课堂练习:一、填空。1.如果一条抛物线的形状与y=-13x2+2的形状相同,且顶点坐标是(4,-2),它的解析式是_____________。2.已知抛物线y=ax2+bx+c的对称轴为x=2,且过(3,0),则a+b+c=____________。二、选择。3.如图(1),二次函数y=ax2+bx+c图象如图所示,则下列结论成立的是()A.a>0,bc>0B.a<0,bc<0C.a>O,bc<OD.a<0,bc>0学子教育一对一辅导74.已知二次函数y=ax2+bx+c图象如图(2)所示,那么函数解析式为()A.y=-x2+2x+3B.y=x2-2x-3C.y=-x2-2x+3D.y=-x2-2x-35.若二次函数y=ax2+c,当x取x1、x2(x1≠x2)时,函数值相等,则当x取x1+x2时,函数值为()A.a+cB.a-cC.-cD.c6.已知二次函数y=ax2+bx+c图象如图(3)所示,下列结论中:①abc>0,②b=2a;③a+b+c<0,④a-b+c>0,正确的个数是()A.4个B.3个C.2个D.1个7.在同一坐标系中一次函数和二次函数的图象可能为()三、解答题。8.已知抛物线y=x2-(2m-1)x+m2-m-2。(1)证明抛物线与x轴有两个不相同的交点,(2)分别求出抛物线与x轴交点A、B的横坐标xA、xB,以及与y轴的交点的纵坐标yc(用含m的代数式表示)(3)设△ABC的面积为6,且A、B两点在y轴的同侧,求抛物线的解析式。作业训练:1.二次函数y=-x2+6x-5,当时,,且随的增大而减小。2.抛物线的顶点坐标在第三象限,则的值为()A.B.C.D..3.抛物线y=x2-2x+3的对称轴是直线()A.x=2B.x=-2C.x=-1D.x=14.二次函数y=x2+2x-7的函数值是8,那么对应的x的值是()A.3B.5C.-3和5D.3和-55.抛物线y=x2-x的顶点坐标是()学子教育一对一辅导86.二次函数的图象,如图1-2-40所示,根据图象可得a、b、c与0的大小关系是()A.a>0,b<0,c<0B.a>0,b>0,c>0C.a<0,b<0,c<0D.a<0,b>0,c<07.小敏在今年的校运动会跳远比赛中跳出了满意一跳,函数h=3.5t-4.9t2(t的单位s;h中的单位:m)可以描述他跳跃时重心高度的变化.如图,则他起跳后到重心最高时所用的时间是()A.0.71sB.0.70sC.0.63sD.0.36s8.已知抛物线的解析式为y=-(x—2)2+l,则抛物线的顶点坐标是()A.(-2,1)B.(2,l)C.(2,-1)D.(1,2)9.若二次函数y=x2-x与y=-x2+k的图象的顶点重合,则下列结论不正确的是()A.这两个函数图象有相同的对称轴B.这两个函数图象的开口方向相反C.方程-x2+k=0没有实数根D.二次函数y=-x2+k的最大值为10.抛物线y=x2+2x-3与x轴的交点的个数有()A.0个B.1个C.2个D.3个11.抛物线y=(x—l)2+2的对称轴是()A.直线x=-1B.直线x=1C.直线x=2D.直线x=212.已知二次函数的图象如图所示,则在“①a<0,②b>0,③c<0,④b2-4ac>0”中,正确的判断是()A、①②③④B、④C、①②③D、①④13.已知二次函数(a≠0)的图象如图所示,则下列结论:①a、b同号;②当x=1和x=3时,函数值相等;③4a+b=0;④当y=-2时,x的值只能取0.其中正确的个数是()A.l个B.2个C.3个D.4个(第14题图)14.如图,抛物线的顶点P的坐标是(1,-3),则此抛物线对应的二次函数有()A.最大值1B.最小值-3C.最大值-3D.最小值1学子教育一对一辅导915.用列表法画二次函数的图象时先列一个表,当表中对自变量x的值以相等间隔的值增加时,函数y所对应的值依次为:20,56,110,182,274,380,506,650.其中有一个值不正确,这个不正确的值是()A.506B.380C.274D.18216.将二次函数y=x2-4x+6化为y=(x—h)2+k的形式:y=___________17.若二次函数y=x2-4x+c的图象与x轴没有交点,其中c为整数,则c=________(只要求写一个).18.抛物线y=(x-1)2+3的顶点坐标是____________.19.二次函数y=x2-2x-3与x轴两交点之间的距离为_________.20.已知抛物线y=ax2+bx+c经过A(-1,0)、B(3,0)、C(0,3)三点,(1)求抛物线的解析式和顶点M的坐标,并在给定的直角坐标系中画出这条抛物线。(2)若点(x0,y0)在抛物线上,且0≤x0≤4,试写出y0的取值范围。21.华联商场以每件30元购进一种商品,试销中发现每天的销售量(件)与每件的销售价(元)满足一次函数y=162-3x;(1)写出商场每天的销售利润(元)与每件的销售价(元)的函数关系式;(2)如果商场要想获得最大利润,每件商品的销售价定为多少为最合适?最大销售利润为多少?22.某公司推出了一种高效环保型洗涤用品,年初上市后,公司经历了从亏损到盈利的过程.下面的二次函数图像(部分)刻画了该公司年初以来累积利润s(万元)与销售时间t(月)之间的关系(即前t个月的利润总和s与t之间的关系).根据图像提供的信息,解答下列问题:(1

1 / 10
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功