由莲山课件提供资源全部免费由莲山课件提供资源全部免费(本试卷满分150分,考试时间120分钟)题号一二三四五六七八总分得分一、选择题(本大题共10小题,每小题4分,共40分,在每小题给出的四个选项中,只有一项是最符合题目要求的。)1、二次函数y=2(x-1)2+3的图像的顶点坐标是()A、(1,3)B、(-1,3)C、(1,-3)D、(-1,-3)2、若P是Rt△ABC的斜边BC上异于B,C的一点,过点P作直线截△ABC,截得的三角形与原△ABC相似,满足这样条件的直线共有()A.1条B.2条C.3条D.4条3、把二次函数y=3412xx用配方法化成y=a(x-h)2+k的形式()A、2412x2)(yB、441)2(2xyC、441)2(2xyD、3)2121(2xy4、把二次函数23xy的图象向左平移2个单位,再向上平移1个单位,所得到的图象对应的二次函数关系式是()A、1232xyB、1232xyC、1232xyD、1232xy5、如图,P是ABC的边AC上的一点,连结BP,则下列条件中不能判定ABP∽ACB的是()A、ABACAPAB由莲山课件提供资源全部免费由莲山课件提供资源全部免费B、BPBCABACC、CABPD、ABCAPB6、若点(2,5),(4,5)在抛物线y=ax2+bx+c上,则它的对称轴是()A.abxB.x=1C.x=2D.x=37、在长为8cm、宽为4cm的矩形中,截去一个矩形,使得留下的矩形与原矩形相似,则留下矩形的面积是()A.2cm2B.4cm2C.8cm2D.16cm28、二次函数2(0)yaxbxca的图象如图所示,对称轴是直线1x,则下列四个结论错误..的是()A.0cB.20abC.240bacD.0abc9、如图所示,△ABC中若DE∥BC,EF∥AB,则下列比例式正确的是()A.BCDEDBADB.ADEFBCBFC.FCBFECAED.BCDEABEF10、如图所示,在△ABC中∠BAC=90°,D是BC中点,AE⊥AD交CB延长线于E点,则下列结论正确的是()由莲山课件提供资源全部免费由莲山课件提供资源全部免费A.△AED∽△ACBB.△AEB∽△ACDC.△BAE∽△ACED.△AEC∽△DAC二、填空题(本大题共4小题,每小题5分,共20分,把答案填在题中横线上)。11、二次函数y=x2-6x+c的图象的顶点与原点的距离为5,则c=______.12、已知函数y=(m+2)xm(m+1)是二次函数,则m=______________。13、如图,在正方形网格上,若使△ABC∽△PBD,则点P应在。14、已知抛物线y=x2+bx+c的部分图象如图所示,若y0,则x的取值范围是。三、解答题:(本大题共2小题,每小题8分,共16分)15、小李想用篱笆围成一个周长为60米的矩形场地,矩形面积S(单位:平方米)随矩形一边长x(单位:米)的变化而变化.(1)求S与x之间的函数关系式,并写出自变量x的取值范围;(2)当x是多少时,矩形场地面积S最大?最大面积是多少?16、如图,在矩形ABCD中,点EF、分别在边ADDC、上,ABEDEF△∽△,AB=6,AE=8,DE=2,求EF的长.由莲山课件提供资源全部免费由莲山课件提供资源全部免费四、解答题:(本大题共2小题,每小题8分,共16分)17、已知抛物线y=ax2+bx+c(a0)与x轴的两交点的横坐标分别是-1和3,与y轴交点的纵坐标是-32;(1)确定抛物线的解析式;(2)说出抛物线的开口方向,对称轴和顶点坐标。18、如图,△ABC在方格纸中(1)请在方格纸上建立平面直角坐标系,使A(2,3),C(6,2),并求出B点坐标;(2)以原点O为位似中心,相似比为2,在第一象限内将△ABC放大,画出放大后的图形△A′B′C′,并写出A′、B′、C′的坐标。由莲山课件提供资源全部免费由莲山课件提供资源全部免费五、(本大题共2小题,每小题10分,共20分)19、如图,矩形ABCD的边AB=6cm,BC=8cm,在BC上取一点P,在CD边上取一点Q,使∠APQ成直角,设BP=xcm,CQ=ycm,试以x为自变量,写出y与x的函数关系式.由莲山课件提供资源全部免费由莲山课件提供资源全部免费20、如图,在△ABC的外接圆O中,D是弧BC的中点,AD交BC于点E,连结BD.请考虑:BD2=DE·DA是否成立?若成立,给出证明;若不成立,举例说明.六、(本大题满分12分)21、如图所示,∠C=90°,BC=8㎝,AC︰AB=3︰5,点P从点B出发,沿BC向点C以2㎝/s的速度移动,点Q从点C出发沿CA向点A以1㎝/s的速度移动,如果P、Q分别从B、C同时出发,过多少秒时,以C、P、Q为顶点的三角形恰与△ABC相似?由莲山课件提供资源全部免费由莲山课件提供资源全部免费七、(本大题满分12分)22、如图,隧道的截面由抛物线AED和矩形ABCD构成,矩形的长BC为8m,宽AB为2m,以BC所在的直线为x轴,线段BC的中垂线为y轴,建立平面直角坐标系,y轴是抛物线的对称轴,顶点E到坐标原点O的距离为6m.(1)求抛物线的解析式;(2)一辆货运卡车高4.5m,宽2.4m,它能通过该隧道吗?(3)如果该隧道内设双行道,为了安全起见,在隧道正中间设有0.4m的隔离带,则该辆货运卡车还能通过隧道吗?由莲山课件提供资源全部免费由莲山课件提供资源全部免费八、(本大题满分14分)23、某商业公司为指导某种应季商品的生产和销售,对三月至七月份该商品的售价和生产进行了调研,结果如下:一件商品的售价M(元)与时间t(月)的关系可用一条线段上的点来表示(如图甲),一件商品的成本Q(元)与时间t(月)的关系可用一条抛物线上的点来表示,其中6月份成本最高(如图乙).根据图象提供的信息解答下面问题:(1)一件商品在3月份出售时的利润是多少元?(利润=售价-成本)由莲山课件提供资源全部免费由莲山课件提供资源全部免费(2)求出图(乙)中表示的一件商品的成本Q(元)与时间t(月)之间的函数关系式;(3)你能求出3月份至7月份一件商品的利润W(元)与时间t(月)之间的函数关系式吗?若该公司能在一个月内售出此种商品30000件,请你计算该公司在一个月内最少获利多少元?[来源:中.考.资.源.网]由莲山课件提供资源全部免费由莲山课件提供资源全部免费九年级第二学期第一次阶段性考试数学试题参考答案三、15、⑴xxs302(0<x<30)⑵15米,225平方米16、310[来源:中.考.资.源.网]五、19、证⊿ABP∽⊿PCQ.xxy34612(0≤x<8)20、成立。证明略。六、21、2.4秒或11102秒。八、23、略解:(1)一件商品在3月份出售时利润为:6-1=5(元).(2),84314)6(3122tttQt=3,4,5,6,7.(3).432tM)8431(4322tttQMW12310312tt311)5(312t其中t=3,4,5,6,7.由莲山课件提供资源全部免费由莲山课件提供资源全部免费由莲山课件提供资源全部免费由莲山课件提供资源全部免费