第三章方程(组)与中考应试对策1、要弄清一元一次方程及二元一次方程组的定义,方程(组)的解(整数解)等概念。2、要熟练掌握一元一次方程,二元一次方程组的解法。3、要弄清一元一次方程与一次函数、一元一次不等式之间的关系。4、要弄清一元二次方程的定义,ax+bx+c=0(a0),a,b,c均为常数,尤其a不为零要切记。5、要弄清一元二次方程的解的概念。6、要熟练掌握一元二次方程的几种解法,如因式分解法、公式法等,弄清化一元二次方程为一元一次方程的转化思想。7、要加强一元二次方程与二次函数之间的综合的训练。8、让学生理解化分式方程为整式方程的思想。9、熟练掌握解分式方程的方法。10、让学生学会行程、工程、储蓄、打折销售等基本类型应用题的分析。11、让学生掌握生活中问题的数学建模的方法,多做一些综合性的训练。〖知识点〗等式及基本性质、方程、方程的解、解方程、一元一次方程、一元二次方程、〖大纲要求〗1.理解方程和一元一次方程、一元二次方程概念;2.理解等式的基本性质,能利用等式的基本性质进行方程的变形,掌握解一元一次方程的一般步骤,能熟练地解一元一次方程;3.会推导一元二次方程的求根公式,理解公式法与用直接开平方法、配方法解一元二次方程的关系,会选用适当的方法熟练地解一元二次方程4.体验“未知”与“已知”的对立统一关系。内容分析1.方程的有关概念含有未知数的等式叫做方程.使方程左右两边的值相等的未知数的值叫做方程的解(只含有—个未知数的方程的解,也叫做根).2.一次方程(组)的解法和应用只含有一个未知数,并且未知数的次数是1,系数不为零的方程,叫做一元一次方程.解一元一次方程的一般步骤是去分母、去括号、移项、合并同类项和系数化成1.3.一元二次方程的解法(!)直接开平方法形如(mx+n)2=r(r≥o)的方程,两边开平方,即可转化为两个一元一次方程来解,这种方法叫做直接开平方法.(2)把一元二次方程通过配方化成(mx+n)2=r(r≥o)的形式,再用直接开平方法解,这种方法叫做配方法.(3)公式法通过配方法可以求得一元二次方程ax2+bx+c=0(a≠0)的求根公式:aacbbx242用求根公式解一元二次方程的方法叫做公式法.(4)因式分解法如果一元二次方程ax2+bx+c=0(a≠0)的左边可以分解为两个一次因式的积,那么根据两个因式的积等于O,这两个因式至少有一个为O,原方程可转化为两个一元一次方程来解,这种方法叫做因式分解法.〖考查重点与常见题型〗考查一元一次方程、一元二次方程及高次方程的解法,有关习题常出现在填空题和选择题中。第一讲一次方程(组)及应用【回顾与思考】【例题经典】掌握一元一次方程的解法步骤例1解方程:x-12223xx【点评】按去分母、去括号、移项、合并同类项、系数化为1,五步进行掌握二元一次方程组的解法例2已知方程组2,4axbyaxby的解为2,1.xy,求2a-3b的值.【点评】将2,1.xy代入原方程组后利用加减法解关于a,b的方程组.例3、某电视台在黄金时段的2min广告时间内,计划插播长度为15s和30s的两种广告,15s广告每播1次收费0.6万元,30s广告每播1次收费1万元。若要求每种广告播放不少于2次。问:⑴两种广告的播放次数有几中安排方式?⑵电视台选择哪种方式播放收益较大?点评:本题只能列出一个二元一次方程,因此需要学生对二元一次方程的解有深刻的理解。体现了“从知识立意向能力立意转变”的新命题理念。解:(1)设15s广告播放x次,30s广告播放y次。15x+30y=120而x,y均为不小于2的正整数,∴24yx或32yx(2)方案14.4万元;方案24.2万元。一次方程的应用例1.下图是学校化学实验室用于放试管的木架,在每层长29cm的木条上钻有6个圆孔,每个圆孔的直径均为2.5cm.两端与圆孔边缘及任何相邻两孔边缘之间的距离都相等并设为Xcm,则x为()A.2B.2.15C.2.33D.2.36分析:考查列一元一次方程并解方程答案:A例2据某统计数据显示,在我国的664座城市中,按水资源情况可分为三类:暂不缺水城市,一般缺水城市和严重缺水城市,其中,暂不缺水城市数比严重缺水城市数的4倍少50座,一般缺水城市是严重缺水城市数的2倍,求严重缺水城市有多少座?【点评】一元一次方程或二元一次方程组都可解答此题.例4.小红家春天粉刷房间,雇用了5个工人,干了10天完成;用了某种涂料150升,费用为4800元;粉刷的面积是150m2.最后结算工钱时,有以下几种方案:方案一:按工算,每个工30元;(1个工人干1天是一个工);方案二:按涂料费用算,涂料费用的30%作为工钱;方案三:按粉刷面积算,每平方米付工钱12元.请你帮小红家出主意,选择方案付钱最合算(最省).分析:考查方程和方程的应用,方案一:5*10*30+4800=6300元方案二:4800*30%=1440元,方案三:12*150=1800元答案:方案二第二讲一元二次方程及应用【回顾与思考】【例题经典】掌握一元二次方程的解法例1解方程:(1)3x2+8x-3=0;(2)9x2+6x+1=0;(3)x-2=x(x-2);(4)x2-25x+2=0例2.若关于x的方程x2+px+1=0的一个实数根的倒数恰是它本身,则p的值是.分析:一个实数的倒数是它的本身,这个实数是±1答案:±2例3.关于x的一元二次方程02cbxx的两根为11x,22x,则cbxx2分解因式的结果为_________________________;分析:考查一元二次方程和分解因式的综合。将x1、x2的值代入方程求出b、c答案:(x-1)(x-2)会判断一元二次方程根的情况例4不解方程判别方程2x2+3x-4=0的根的情况是()A.有两个相等实数根;B.有两个不相等的实数根;C.只有一个实数根;D.没有实数根【点评】根据b2-4ac与0的大小关系来判断例5已知一元二次方程x2-4x+k=0有两个不相等的实数根(1)求k的取值范围;(2)如果k是符合条件的最大整数,且一元二次方程x2-4x+k=0与x2+mx-1=0有一个相同的根,求此时m的值.点评:本题考查了解一元二次方程的解法、根的判别式、不等式的整数解等知识点。一元二次方程的应用例6某印刷厂1月份印刷了书籍60万册,第一季度共印刷了200万册,问2、3月份平均每月的增长率是多少?【点评】设2、3月份平均每月的增长率为x,即60+60(1+x)+60(1+x)2=200第三讲分式方程及应用【回顾与思考】〖知识点〗分式方程、解法思路、解法、增根〖大纲要求〗了解分式方程、。掌握把简单的分式方程、转化为一元一次方程、一元二次方程的一般方法,会用换元法解方程,会检验。内容分析.分式方程的解法(1)去分母法用去分母法解分式方程的一般步骤是:(i)在方程的两边都乘以最简公分母,约去分母,化成整式方程;(ii)解这个整式方程;(iii)把整式方程的根代入最简公分母,看结果是不是零,使最简公分母不为零的根是原方程的根,使最简公分母为零的根是增根,必须舍去.在上述步骤中,去分母是关键,验根只需代入员简公分母.【例题经典】理解分式方程的有关概念例1指出下列方程中,分式方程有()①21123xx=5②223xx=5③2x2-5x=0④5252xx+3=0A.1个B.2个C.3个D.4个【点评】根据分式方程的概念,看方程中分母是否含有未知数.掌握分式方程的解法步骤例2解方程:(1)(2006年成都市)11262213xx;(2)(2006年绍兴市)3511xx。【点评】注意分式方程最后要验根。分式方程的应用例5(2006年长春市)某服装厂装备加工300套演出服,在加工60套后,采用了新技术,使每天的工作效率是原来的2倍,结果共用9天完成任务,求该厂原来每天加工多少套演出服.【点评】要用到关系式:工作效率=工作量工作时间。例6某公路上一路段的道路维修工程准备对外招标,现有甲、乙两个工程队竞标,竞标资料上显示:若由两队合做,6天可以完成,共需工程费用10200元;若单独完成此项工程,甲队比乙队少用5天.但甲队每天的工程费用比乙队多300元,工程指挥部决定从这两个队中选一个队单独完成此项工程,若从节省资金的角度考虑,应该选择哪个工程队?为什么?解:设甲队每天费用为a元,乙队每天费用为b元,则(a+b)×6=10200a-b=300解:设甲队独做需x天完成,则乙队独做(x+5)天完成.由题意,列方程.615x1x1整理得x2-7x-30=O.解之得x1=10,x2=-3.经检验x1'x2都是原方程的根,但x2=-3不合题意舍去.∴甲队独做需10天完成,乙队独做需15天完成.解之得a=1000b=700所以甲队独做的费用为1000×10=10000(元),乙队独做的费用为700×15=10500(元).∵1050010000..若从节省资金的角度考虑,应选择甲工程队.例7为满足用水量不断增长的需求,昆明市最近新建甲、乙、丙三个水厂,这三个水厂的日供水量共计11.8万立方米,其中乙水厂的日供水量是甲水厂日供水量的3倍,丙水厂的日供水量比甲水厂日供水量的一半还多1万立方米.(1)求这三个水厂的日供水量各是多少万立方米?(2)在修建甲水厂的输水管道的工程中要运走600吨土石,运输公司派出A型、B型两种载重汽车,A型汽车6辆、B型汽车4辆,分别运5次,可把土石运完;或者A型汽车3辆、B型汽车6辆,分别运5次,也可把土石运完.那么每辆A型汽车、每辆B型汽车每次运土石各多少吨?(每辆汽车运土石都以标准载重量满载)解:(1)设甲水厂的日供水量是x万立方米,则乙水厂的日供水量是3x万立方米,丙水厂的日供水量是(x/2+1)万立方米.由题意得:x+3x+x/4+1=11.8解得:x=2.4答:甲水厂日供水量是2.4万立方米,乙水厂日供水量是7.2万立方米,丙水厂日供水量是2.2万立方米.(2)每辆A型汽车每次运土石lO吨、每辆B型汽车每次运土石15吨.第四讲列出方程(组)解应用题〖知识点〗列方程(组)解应用题的一般步骤、列方程(组)解应用题的核心、应用问题的主要类型〖大纲要求〗能够列方程(组)解应用题内容分析列出方程(组)解应用题的一般步骤是:(i)弄清题意和题目中的已知数、未知数,用字母表示题目中的一个(或几个)未知数;(ii)找出能够表示应用题全部含义的一个(或几个)相等关系;(iii)根据找出的相等关系列出需要的代数式,从而列出方程(或方程组);(iv)解这个方程(或方程组),求出未知数的值;(v)写出答案(包括单位名称).〖考查重点与常见题型〗考查列方程(组)解应用题的能力,其中重点是列一元二次方程或列分式方程解应用题,习题以工程问题、行程问题为主,近几年出现了一些经济问题,应引起注意一、填空题1.某商品标价为165元,若降价以九折出售(即优惠10%),仍可获利10%(相对于进货价),则该商品的进货价是2.甲、乙二人投资合办一个企业,并协议按照投资额的比例分配所得利润,已知甲与乙投资额的比例为3:4,首年的利润为38500元,则甲、乙二人可获得利润分别为元和元3.某公司2008年出口创收135万美元,2009年、2010年每年都比上一年增加a%,那么,2010年这个公司出口创汇万美元4.某城市现有42万人口,计划一年后城镇人口增加0.8%,农村人口增加1.1%,这样全市人口将增加1%,求这个城市现有的城镇人口数与农村人口数,若设城镇现有人口数为x万,农村现有人口y万,则所列方程组为5.在农业生产上,需要用含盐16%的盐水来选种,现有含盐24%的盐水200千克,需要加水多少千克?解:设需要加水x千克根据题意,列方程为,解这个方程,得答:.6.某电视机厂2008年向国家上缴利税400万元,2010年增加到484万元,则该厂两年上缴的利税平均每年增长的百分率7.某种商品的进货价每件为x元,零售价为每件900元,为了适应市场竞争,商店按零售价的