九年级1.如图所示,在△ABC中,DE∥BC,若AD=1,DB=2,则BCDE的值为()A.32B.41C.31D.21第1题图第2题图第3题图2.如图所示,△ABC中DE∥BC,若AD∶DB=1∶2,则下列结论中正确的是()A.21BCDEB.21的周长的周长ABCADEC.的面积的面积ABCADE31D.的周长的周长ABCADE313.如图所示,在△ABC中∠BAC=90°,D是BC中点,AE⊥AD交CB延长线于E点,则下列结论正确的是()A.△AED∽△ACBB.△AEB∽△ACDC.△BAE∽△ACED.△AEC∽△DAC4.如图所示,在△ABC中D为AC边上一点,若∠DBC=∠A,6BC,AC=3,则CD长为()A.1B.23C.2D.25第4题图第6题图第7题图5.若P是Rt△ABC的斜边BC上异于B,C的一点,过点P作直线截△ABC,截得的三角形与原△ABC相似,满足这样条件的直线共有()A.1条B.2条C.3条D.4条6.如图所示,△ABC中若DE∥BC,EF∥AB,则下列比例式正确的是()A.BCDEDBADB.ADEFBCBFC.FCBFECAED.BCDEABEF7.如图所示,⊙O中,弦AB,CD相交于P点,则下列结论正确的是()A.PA·AB=PC·PBB.PA·PB=PC·PDC.PA·AB=PC·CDD.PA∶PB=PC∶PD8.如图所示,△ABC中,AD⊥BC于D,对于下列中的每一个条件①∠B+∠DAC=90°②∠B=∠DAC③CD:AD=AC:AB④AB2=BD·BC其中一定能判定△ABC是直角三角形的共有()A.3个B.2个C.1个D.0个9.如图9所示,身高1.6m的小华站在距路灯杆5m的C点处,测得她在灯光下的影长CD为2.5m,则路灯的高度AB为______.10.如图所示,△ABC中,AD是BC边上的中线,F是AD边上一点,且61EBAE,射线CF交AB于E点,则FDAF等于______.11.如图所示,△ABC中,DE∥BC,AE∶EB=2∶3,若△AED的面积是4m2,则四边形DEBC的面积为______.12.若两个相似多边形的对应边的比是5∶4,则这两个多边形的周长比是______.13.已知:如图,△ABC中,∠BAC=90°,AB=AC=1,点D是BC边上的一个动点(不与B,C点重合),∠ADE=45°.(1)求证:△ABD∽△DCE;(2)设BD=x,AE=y,求y关于x的函数关系式;(3)当△ADE是等腰三角形时,求AE的长.14.如图所示,在平面直角坐标系xOy内已知点A和点B的坐标分别为(0,6),(8,0),动点P从点A开始在线段AO上以每秒1个单位长度的速度向点O移动,同时动点Q从点B开始在线段BA上以每秒2个单位长度的速度向点A移动,设点P,Q移动的时间为t秒.(1)求直线AB的解析式;(2)当t为何值时,△APQ与△ABO相似?(3)当t为何值时,△APQ的面积为524个平方单位?15.已知:如图,□ABCD中,AB=4,BC=3,∠BAD=120°,E为BC上一动点(不与B点重合),作EF⊥AB于F,FE,DC的延长线交于点G,设BE=x,△DEF的面积为S.(1)求证:△BEF∽△CEG;(2)求用x表示S的函数表达式,并写出x的取值范围;(3)当E点运动到何处时,S有最大值,最大值为多少?参考答案1.C.2.D.3.C.4.C.5.C.6.C.7.B.8.A.9.4.8m.10.3111.21m2.12.5∶4.13.(1),BABDCBABCBAABD,得△HBD∽△CBA;(2)△ABC∽△CDE,DE=1.5.14..cm133提示:连结AC.15.提示:.52,10,25111111CBBACA△A1B1C1的面积为5.16.C(4,4)或C(5,2).17.提示:(1)连结OB.∠D=45°.(2)由∠BAC=∠D,∠ACE=∠DAC得△ACE∽△DAC.18.(1)提示:除∠B=∠C外,证∠ADB=∠DEC.(2)提示:由已知及△ABD∽△DCE可得.22xxCE从而y=AC-CE=x2-.12x(其中20x).(3)当∠ADE为顶角时:.22AE提示:当△ADE是等腰三角形时,△ABD≌△DCE.可得.12x当∠ADE为底角时:21AE19.(1)S'∶S=1∶4;(2)).40(41162xxxy20.提示:设P点的横坐标xP=a,则P点的纵坐标yP=a2-a-1.则PM=|a2-a-1|,BM=|a-1|.因为△ADB为等腰直角三角形,所以欲使△PMB∽△ADB,只要使PM=BM.即|a2-a-1|=|a-1|.不难得a1=0..2.2.2432aaa∴P点坐标分别为P1(0,-1).P2(2,1).).21,2().21,2(43PP21.(1)y=x2-2x-3,A(-1,0),B(3,0);(2))49,43(D或D(1,-2).22.(1);643xy(2)1130t或;1350(3)t=2或3.23.(1)略;(2));30(8311832xxxS(3)当x=3时,S最大值33.1.当a≠0时,函数y=ax+1与函数y=ax在同一坐标系中的图象可能是()2.如图,直线x=t(t0)与反比例函数y=2x,y=-1x的图象分别交于B,C两点,A为y轴上的任意一点,则△ABC的面积为()A.3B.32tC.32D.不能确定3.在同一直角坐标系下,直线y=x+1与双曲线y=1x的交点的个数为()A.0个B.1个C.2个D.不能确定4.已知反比例函数y=ax(a≠0)的图象,在每一象限内,y的值随x值的增大而减小,则一次函数y=-ax+a的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限5.如图,直线l和双曲线y=kx(k0)交于A,B两点,P是线段AB上的点(不与A,B重合),过点A,B,P分别向x轴作垂线,垂足分别是C,D,E,连接OA,OB,OP,设△AOC面积是S1,△BOD面积是S2,△POE面积是S3,则()A.S1<S2<S3B.S1S2S3C.S1=S2S3D.S1=S2S36.如图是一个反比例函数图象的一支,点A在此曲线上,则其解析式为______________.7.反比例函数y=k-2013x图象的每一分支上,y随x的增大而减小,k的取值范围是______________.8.反比例函数y=(m-2)x2m+1的函数值为13时,自变量x的值是____________.9.l1是反比例函数y=kx在第一象限内的图象,且过点A(2,1),l2与l1关于x轴对称,那么图象l2的函数解析式为____________(x0).10.反比例函数y=kx的图象与一次函数y=2x+1的图象的一个交点是(1,k),则反比例函数的解析式是__________.11.在平面直角坐标系中,O为原点,一次函数与反比例函数的图象相交于A(2,1),B(-1,-2)两点,与x轴交于点C.(1)分别求反比例函数和一次函数的解析式(关系式);(2)连接OA,求△AOC的面积.12.直线y=2x-6与反比例函数y=kx(x0)的图象交于点A(4,2),与x轴交于点B.(1)求k的值及点B的坐标;(2)在x轴上是否存在点C,使得AC=AB?若存在,求出点C的坐标;若不存在,请说明理由.13.如图,正比例函数y=12x的图象与反比例函数y=kx(k≠0)在第一象限的图象交于A点,过A点作x轴的垂线,垂足为M,已知△OAM的面积为1.(1)求反比例函数的解析式;(2)如果B为反比例函数在第一象限图象上的点(点B与点A不重合),且B点的横坐标为1,在x轴上求一点P,使PA+PB最小,并求出此最小值及P点的坐标.