中考动态图形专项训练(实用)

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

一、(09太原)问题解决如图(1),将正方形纸片ABCD折叠,使点B落在CD边上一点E(不与点C,D重合),压平后得到折痕MN.当12CECD时,求AMBN的值.类比归纳在图(1)中,若13CECD,则AMBN的值等于;若14CECD,则AMBN的值等于;若1CECDn(n为整数),则AMBN的值等于.(用含n的式子表示)联系拓广如图(2),将矩形纸片ABCD折叠,使点B落在CD边上一点E(不与点CD,重合),压平后得到折痕MN,设111ABCEmBCmCDn,,则AMBN的值等于.(用含mn,的式子表示)解:方法一:如图(1-1),连接BMEMBE,,.由题设,得四边形ABNM和四边形FENM关于直线MN对称.∴MN垂直平分BE.∴BMEMBNEN,.……………1分∵四边形ABCD是正方形,∴902ADCABBCCDDA°,.∵112CECEDECD,.设BNx,则NEx,2NCx.在RtCNE△中,222NECNCE.∴22221xx.解得54x,即54BN.…………3分在RtABM△和在RtDEM△中,222AMABBM,方法指导:为了求得AMBN的值,可先求BN、AM的长,不妨设:AB=2图(2)NABCDEFMN图(1-1)ABCDEFM222DMDEEM,∴2222AMABDMDE.…………5分设AMy,则2DMy,∴2222221yy.解得14y,即14AM.…………6分∴15AMBN.…………7分方法二:同方法一,54BN.…………3分如图(1-2),过点N做NGCD∥,交AD于点G,连接BE.∵ADBC∥,∴四边形GDCN是平行四边形.∴NGCDBC.同理,四边形ABNG也是平行四边形.∴54AGBN.∵90MNBEEBCBNM,°.90NGBCMNGBNMEBCMNG,°,.在BCE△与NGM△中90EBCMNGBCNGCNGM,,°.∴BCENGMECMG△≌△,.5分∵114AMAGMGAM5,=.4…………6分∴15AMBN.…………7分类比归纳25(或410);917;2211nn…………10分联系拓广2222211nmnnm…………12分N图(1-2)ABCDEFMG三年共同点:①特殊四边形为背景;②点动带线动得出动三角形;③探究动三角形问题(相似、等腰三角形、面积函数关系式);④求直线、抛物线解析式;⑤探究存在性问题时,先画出图形,再根据图形性质探究答案。1、(09包头)如图,已知ABC△中,10ABAC厘米,8BC厘米,点D为AB的中点.(1)如果点P在线段BC上以3厘米/秒的速度由B点向C点运动,同时,点Q在线段CA上由C点向A点运动.①若点Q的运动速度与点P的运动速度相等,经过1秒后,BPD△与CQP△是否全等,请说明理由;②若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使BPD△与CQP△全等?(2)若点Q以②中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿ABC△三边运动,求经过多长时070809动点个数两个一个两个问题背景特殊菱形两边上移动特殊直角梯形三边上移动抛物线中特殊直角梯形底边上移动考查难点探究相似三角形探究三角形面积函数关系式探究等腰三角形考点①菱形性质②特殊角三角函数③求直线、抛物线解析式④相似三角形⑤不等式①求直线解析式②四边形面积的表示③动三角形面积函数④矩形性质①求抛物线顶点坐标②探究平行四边形③探究动三角形面积是定值④探究等腰三角形存在性特点①菱形是含60°的特殊菱形;△AOB是底角为30°的等腰三角形。②一个动点速度是参数字母。③探究相似三角形时,按对应角不同分类讨论;先画图,再探究。④通过相似三角形过度,转化相似比得出方程。⑤利用a、t范围,运用不等式求出a、t的值。①观察图形构造特征适当割补表示面积②动点按到拐点时间分段分类③画出矩形必备条件的图形探究其存在性①直角梯形是特殊的(一底角是45°)②点动带动线动③线动中的特殊性(两个交点D、E是定点;动线段PF长度是定值,PF=OA)④通过相似三角形过度,转化相似比得出方程。⑤探究等腰三角形时,先画图,再探究(按边相等分类讨论)AQCDBP间点P与点Q第一次在ABC△的哪条边上相遇?解:(1)①∵1t秒,∴313BPCQ厘米,∵10AB厘米,点D为AB的中点,∴5BD厘米.又∵8PCBCBPBC,厘米,∴835PC厘米,∴PCBD.又∵ABAC,∴BC,∴BPDCQP△≌△.(4分)②∵PQvv,∴BPCQ,又∵BPDCQP△≌△,BC,则45BPPCCQBD,,∴点P,点Q运动的时间433BPt秒,∴515443QCQvt厘米/秒.(7分)(2)设经过x秒后点P与点Q第一次相遇,由题意,得1532104xx,解得803x秒.∴点P共运动了803803厘米.∵8022824,∴点P、点Q在AB边上相遇,∴经过803秒点P与点Q第一次在边AB上相遇.(12分)2、(09齐齐哈尔)直线364yx与坐标轴分别交于AB、两点,动点PQ、同时从O点出发,同时到达A点,运动停止.点Q沿线段OA运动,速度为每秒1个单位长度,点P沿路线O→B→A运动.(1)直接写出AB、两点的坐标;(2)设点Q的运动时间为t秒,OPQ△的面积为S,求出S与t之间的函数关系式;(3)当485S时,求出点P的坐标,并直接写出以点OPQ、、为顶点的平行四边形的第四个顶点M的坐标.解(1)A(8,0)B(0,6)1分(2)86OAOB,10AB点Q由O到A的时间是881(秒)点P的速度是61028(单位/秒)1分当P在线段OB上运动(或03t≤≤)时,2OQtOPt,2St1分当P在线段BA上运动(或38t≤)时,6102162OQtAPtt,,xAOQPBy如图,作PDOA于点D,由PDAPBOAB,得4865tPD,1分21324255SOQPDtt1分(自变量取值范围写对给1分,否则不给分.)(3)82455P,1分12382412241224555555IMM,,,,,3分3(09深圳)如图,在平面直角坐标系中,直线l:y=-2x-8分别与x轴,y轴相交于A,B两点,点P(0,k)是y轴的负半轴上的一个动点,以P为圆心,3为半径作⊙P.(1)连结PA,若PA=PB,试判断⊙P与x轴的位置关系,并说明理由;(2)当k为何值时,以⊙P与直线l的两个交点和圆心P为顶点的三角形是正三角形?解:(1)⊙P与x轴相切.∵直线y=-2x-8与x轴交于A(4,0),与y轴交于B(0,-8),∴OA=4,OB=8.由题意,OP=-k,∴PB=PA=8+k.在Rt△AOP中,k2+42=(8+k)2,∴k=-3,∴OP等于⊙P的半径,∴⊙P与x轴相切.(2)设⊙P与直线l交于C,D两点,连结PC,PD当圆心P在线段OB上时,作PE⊥CD于E.∵△PCD为正三角形,∴DE=12CD=32,PD=3,∴PE=332.∵∠AOB=∠PEB=90°,∠ABO=∠PBE,∴△AOB∽△PEB,∴3342,=45AOPEABPBPB即,∴315,2PB∴31582POBOPB,∴315(0,8)2P,∴31582k.当圆心P在线段OB延长线上时,同理可得P(0,-3152-8),∴k=-3152-8,∴当k=3152-8或k=-3152-8时,以⊙P与直线l的两个交点和圆心P为顶点的三角形是正三角形.4(09哈尔滨)如图1,在平面直角坐标系中,点O是坐标原点,四边形ABCO是菱形,点A的坐标为(-3,4),点C在x轴的正半轴上,直线AC交y轴于点M,AB边交y轴于点H.(1)求直线AC的解析式;(2)连接BM,如图2,动点P从点A出发,沿折线ABC方向以2个单位/秒的速度向终点C匀速运动,设△PMB的面积为S(S≠0),点P的运动时间为t秒,求S与t之间的函数关系式(要求写出自变量t的取值范围);(3)在(2)的条件下,当t为何值时,∠MPB与∠BCO互为余角,并求此时直线OP与直线AC所夹锐角的正切值.解:5(09河北)在Rt△ABC中,∠C=90°,AC=3,AB=5.点P从点C出发沿CA以每秒1个单位长的速度向点A匀速运动,到达点A后立刻以原来的速度沿AC返回;点Q从点A出发沿AB以每秒1个单位长的速度向点B匀速运动.伴随着P、Q的运动,DE保持垂直平分PQ,且交PQ于点D,交折线QB-BC-CPACBPQED图16于点E.点P、Q同时出发,当点Q到达点B时停止运动,点P也随之停止.设点P、Q运动的时间是t秒(t>0).(1)当t=2时,AP=,点Q到AC的距离是;(2)在点P从C向A运动的过程中,求△APQ的面积S与t的函数关系式;(不必写出t的取值范围)(3)在点E从B向C运动的过程中,四边形QBED能否成为直角梯形?若能,求t的值.若不能,请说明理由;(4)当DE经过点C时,请直接写出t的值.解:(1)1,85;(2)作QF⊥AC于点F,如图3,AQ=CP=t,∴3APt.由△AQF∽△ABC,22534BC,得45QFt.∴45QFt.∴14(3)25Stt,即22655Stt.(3)能.①当DE∥QB时,如图4.∵DE⊥PQ,∴PQ⊥QB,四边形QBED是直角梯形.此时∠AQP=90°.由△APQ∽△ABC,得AQAPACAB,即335tt.解得98t.②如图5,当PQ∥BC时,DE⊥BC,四边形QBED是直角梯形.此时∠APQ=90°.由△AQP∽△ABC,得AQAPABAC,即353tt.解得158t.(4)52t或4514t.①点P由C向A运动,DE经过点C.连接QC,作QG⊥BC于点G,如图6.PCt,222QCQGCG2234[(5)][4(5)]55tt.由22PCQC,得22234[(5)][4(5)]55ttt,解得52t.②点P由A向C运动,DE经过点C,如图7.ACBPQED图4ACBPQED图5AC(E))BPQD图6GAC(E))BPQD图7G22234(6)[(5)][4(5)]55ttt,4514t】6(09河南))如图,在RtABC△中,9060ACBB°,°,2BC.点O是AC的中点,过点O的直线l从与AC重合的位置开始,绕点O作逆时针旋转,交AB边于点D.过点C作CEAB∥交直线l于点E,设直线l的旋转角为.(1)①当度时,四边形EDBC是等腰梯形,此时AD的长为;②当度时,四边形EDBC是直角梯形,此时AD的长为;(2)当90°时,判断四边形EDBC是否为菱形,并说明理由.解(1)①30,1;②60,1.5;……………………4分(2)当∠α=900时,四边形EDBC是菱形.∵∠α=∠ACB=900,∴BC//ED.∵CE//AB,∴四边形EDBC是平行四边形.……………………6分在Rt△ABC中,∠ACB=900,∠B=600,BC=2,∴∠A=300.∴AB=4,AC=23.∴AO=12AC=3.……………………8分在Rt△AOD中,∠A=300,∴AD=2.∴BD=2.∴BD=BC.又∵四边形EDBC是平行四边形,∴四边形EDBC是菱形……………………10分7(09济南)如图,在梯形ABCD中,354245ADBCADDCABB∥,,,,∠.动OECBDAlOCBA(备用图)ADCBMN点M从B点出发沿线段BC以每秒2个单位长度的速度向终点C运动;动点N同时从C点出发沿线段CD以每秒1个单位长度的速度向终点D

1 / 23
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功