-1-专题四动能定理和机械能守恒【考纲要求】内容要求说明功和功率Ⅱ重力势能Ⅱ弹性势能Ⅰ弹性势能的表达式不作要求恒力做功与物体动能变化的关系(实验探究)Ⅱ动能动能定理Ⅱ机械能守恒及其应用Ⅱ验证机械能守恒定律(实验探究)Ⅱ能源和能量耗散Ⅰ【重点知识梳理】1.功和功率(1)功的概念(2)功的定义式(3)合力的功计算方法(4)变力的功计算方法(5)功率的定义式(6)平均功率的计算方法(7)瞬时功率的计算方法(8)牵引力功率的计算(9)汽车启动的两种方式2.机械能(1)动能的表达式(2)动能与动量的关系式(3)重力势能的表达式(4)弹性势能的概念3.功和能的关系(1)功能关系(2)重力做功与重力势能变化的关系(3)弹力做功与弹性势能变化的关系(4)合外力做功与动能变化的关系(动能定理)(5)除重力弹力外其他力做功与机械能变化的关系(6)滑动摩擦力做功与摩擦生热的关系4.守恒定律(1)机械能守恒定律条件内容表达式(2)能的转化和守恒定律内容表达式-2-【分类典型例题】题型一:应用动能定理时的过程选取问题解决这类问题需要注意:对多过程问题可采用分段法和整段法处理,解题时可灵活处理,通常用整段法解题往往比较简洁.[例1]如图4-1所示,一质量m=2Kg的铅球从离地面H=2m高处自由下落,陷入沙坑h=2cm深处,求沙子对铅球的平均阻力.(g取10m/s2)[变式训练1]一个物体从斜面上高h处由静止滑下并紧接着在水平面上滑行一段距离后停止,测得停止处对开始运动处的水平距离为S,如图4-2,不考虑物体滑至斜面底端的碰撞作用,并设斜面与水平面对物体的动摩擦因数相同.求动摩擦因数μ.题型二:运用动能定理求解变力做功问题解决这类问题需要注意:恒力做功可用功的定义式直接求解,变力做功可借助动能定理并利用其它的恒力做功进行间接求解.[例2]如图4-3所示,AB为1/4圆弧轨道,BC为水平轨道,圆弧的半径为R,BC的长度也是R.一质量为m的物体,与两个轨道间的动摩擦因数都为μ,当它由轨道顶端A从静止开始下落时,恰好运动到C处停止,那么物体在AB段克服摩擦力所做的功为()A.μmgR/2B.mgR/2C.mgRD.(1-μ)mgR[变式训练2]质量为m的小球用长为L的轻绳悬于O点,如右图4-4所示,小球在水平力F作用下由最低点P缓慢地移到Q点,在此过程中F做的功为()A.FLsinθB.mgLcosθC.mgL(1-cosθ)D.FLtanθhH图4-1图4-2ACB图4-3图4-4BsOA-3-题型三:动能定理与图象的结合问题解决这类问题需要注意:挖掘图象信息,重点分析图象的坐标、切线斜率、包围面积的物理意义.[例3]静置于光滑水平面上坐标原点处的小物块,在水平拉力F作用下,沿x轴方向运动,拉力F随物块所在位置坐标x的变化关系如图4-5所示,图线为半圆.则小物块运动到x0处时的动能为()A.0B.021xFmC.04xFmD.204x[解析]由于水平面光滑,所以拉力F即为合外力,F随位移X的变化图象包围的面积即为F做的功,设x0处的动能为EK由动能定理得:EK-0=04xFm=208x=22mF答案:C[变式训练3]在平直公路上,汽车由静止开始作匀加速运动,当速度达到vm后立即关闭发动机直到停止,v-t图像如图4-6所示。设汽车的牵引力为F,摩擦力为f,全过程中牵引力做功W1,克服摩擦力做功W2,则()A.F:f=1:3B.F:f=4:1C.W1:W2=1:1D.W1:W2=l:3题型四:机械能守恒定律的灵活运用解决这类问题需要注意:灵活运用机械能守恒定律的三种表达方式:1.初态机械能等于末态机械能,2.动能增加量等于势能减少量,3.一个物体机械能增加量等于另一个物体机械能减少量.后两种方法不需要选取零势能面.[例4]如图4-7所示,粗细均匀的U形管内装有总长为4L的水。开始时阀门K闭合,左右支管内水面高度差为L。打开阀门K后,左右水面刚好相平时左管液面的速度是多大?(管的内部横截面很小,摩擦阻力忽略不计)图4-6图4-7F/Nx/mx0OFmxF•Ox0K图4-5-4-[变式训练4]如图4-8所示,游乐列车由许多节车厢组成。列车全长为L,圆形轨道半径为R,(R远大于一节车厢的高度h和长度l,但L2πR).已知列车的车轮是卡在导轨上的光滑槽中只能使列车沿着圆周运动,在轨道的任何地方都不能脱轨。试问:在没有任何动力的情况下,列车在水平轨道上应具有多大初速度v0,才能使列车通过圆形轨道而运动到右边的水平轨道上?【能力训练】1.如图4-9所示,水平面上的轻弹簧一端与物体相连,另一端固定在墙上P点,已知物体的质量为m=2.0kg,物体与水平面间的动摩擦因数μ=0.4,弹簧的劲度系数k=200N/m.现用力F拉物体,使弹簧从处于自然状态的O点由静止开始向左移动10cm,这时弹簧具有弹性势能EP=1.0J,物体处于静止状态.若取g=10m/s2,则撤去外力F后()A.物体向右滑动的距离可以达到12.5cmB.物体向右滑动的距离一定小于12.5cmC.物体回到O点时速度最大D.物体到达最右端时动能为0,系统机械能不为02.一辆汽车在水平路面上原来做匀速运动,从某时刻开始,牵引力F和阻力f随时间t的变化规律如图4-10a所示。则从图中的t1到t2时间内,汽车牵引力的功率P随时间t变化的关系图线应为图4-10b中的()3.如图4-11所示,粗细均匀、全长为h的铁链,对称地挂在轻小光滑的定滑轮上.受到微小扰动后,铁链从静止开始运动,当铁链脱离滑轮的瞬间,其速度大小为()A.ghB.gh21C.gh221D.gh24.如图4-12所示,两个底面积都是S的圆桶,放在同一水平面上,桶内装水,水面高度分别为h1和h2,如图所示.已知水的密度为ρ,现把连接两桶阀门打开,最后两桶水面高度相等,则在这过程中重力做的功等于()A.ρgS(h1一h2)PmO图4-11h/2图4-9图4-10a图4-10b-5-B.2)(21hhgSC.4)(221hhgSD.2)(221hhgS5.如图4-13所示,小球自a点由静止自由下落,到b点时与弹簧接触,到c点时弹簧被压缩到最短,若不计弹簧质量和空气阻力,在小球由a→b→c的运动过程中()A.小球和弹簧总机械能守恒B.小球的重力势能随时间均匀减少C.小球在b点时动能最大D.到c点时小球重力势能的减少量等于弹簧弹性势能的增加量6.如图4-14所示,一轻弹簧一端固定于O点,另一端系一重物,将重物从与悬点O在同一水平面且弹簧保持原长的A点无初速度释放,让它自由摆下.不计空气阻力,则在重物由A点摆向最低点B的过程中()A.弹簧与重物的总机械能守恒B.弹簧的弹性势能增加C.重物的机械能不变D.重物的机械能增加7.如图4-15所示,质量为m的物体置于光滑水平面上,一根绳子跨过定滑轮一端固定在物体上,另一端在力F作用下,以恒定速率v0竖直向下运动,物体由静止开始运动到绳与水平方向夹角=45º过程中,绳中拉力对物体做的功为()A.14mv02B.mv02C.12mv02D.22mv028.如图4-16所示,一物体以一定的速度沿水平面由A点滑到B点,摩擦力做功W1;若该物体从A′沿两斜面滑到B′,摩擦力做的总功为W2,已知物体与各接触面的动摩擦因数均相同,则()A.W1=W2B.W1>W2C.W1<W2D.不能确定W1、W2大小关系9.有一斜轨道AB与同材料的l/4圆周轨道BC圆滑相接,数据如图4-17所示,D点在C点的正上方,距地面高度为3R,现让一个小滑块从D点自由下落,沿轨道刚好能滑动到A点,则它再从A点沿轨道自由滑下,能上升到的距地面最大高度是(不计空气阻力)()A.RB.2Rh2h1图4-12abc图4-13图4-14αFv0图4-16图4-15图4-17-6-C.在0与R之间D.在R与2R之间10.一根木棒沿水平桌面从A运动到B,如图4-18所示,若棒与桌面间的摩擦力大小为f,则棒对桌面的摩擦力和桌面对棒的摩擦力做的功各为()A.-fs,-fsB.fs,-fsC.0,-fsD.-fs,011.将一物体从地面竖直上抛,物体上抛运动过程中所受的空气阻力大小恒定.设物体在地面时的重力势能为零,则物体从抛出到落回原地的过程中,物体的机械能E与物体距地面高度h的关系正确的是图4-19中的()12.如图4-20所示,质量分别为2m和3m的两个小球固定在一根直角尺的两端A、B,直角尺的顶点O处有光滑的固定转动轴。AO、BO的长分别为2L和L。开始时直角尺的AO部分处于水平位置而B在O的正下方。让该系统由静止开始自由转动,求:⑴当A到达最低点时,A小球的速度大小为;⑵B球能上升的最大高度为;⑶开始转动后B球可能达到的最大速度为13.如图4-21所示,面积很大的水池,水深为H,水面上浮着一正方体木块,木块边长为a,密度为水的1/2,质量为m.开始时,木块静止,有一半没入水中,现用力F将木块缓慢地压到池底,不计摩擦,求:(1)从木块刚好完全没入水中到停在池底的过程中,池水势能的改变量为.(2)从开始到木块刚好完全没入水的过程中,力F所做的功为.14.在研究摩擦力特点的实验中,将木块放在水平固定长木板上,如图4-22a所示,用力沿水平方向拉木块,拉力从0开始逐渐增大.分别用力传感器采集拉力和木块所受到的摩擦力,并用计算机绘制出摩擦力Ff随拉力F的变化图像,如图4-22b所示.已知木块质量为0.78kg.取重力加速度g=10m/s2,sin37°=0.60,cos37°=0.80.θF图4-22(c)图4-22(a)力传感器图4-22(b)43.12F/NFf/N0214812图4-18图4-19ABO图4-20图4-21-7-(1)求木块与长木板间的动摩擦因数.(2)若木块在与水平方向成37°角斜向右上方的恒定拉力F作用下,以a=2.0m/s2的加速度从静止开始做匀变速直线运动,如图4-22c所示.拉力大小应为多大?(3)在(2)中力作用2s后撤去拉力F,求运动过程中摩擦力对木块做的功.15.图示4-23装置中,质量为m的小球的直径与玻璃管内径接近,封闭玻璃管内装满了液体,液体的密度是小球的2倍,玻璃管两端在同一水平线上,顶端弯成一小段圆弧。玻璃管的高度为H,球与玻璃管的动摩擦因素为μ(μ<tg370=43,小球由左管底端由静止释放,试求:(1)小球第一次到达右管多高处速度为零?(2)小球经历多长路程才能处于平衡状态?16.如图4-24所示,一劲度系数为k=800N/m的轻弹簧两端各焊接着两个质量均为m=12kg的物体A、B。开始时物体A、B和轻弹簧竖立静止在水平地面上,现要在上面物体A上加一竖直向上的力F,使物体A开始向上做匀加速运动,经0.4s物体B刚要离开地面,设整个过程中弹簧都处于弹性限度内,取g=10m/s2。求:此过程中外力F所做的功。H370370图4-23图4-24BFA-8-17.如图4-25所示,倾角为θ的光滑斜面上放有两个质量均为m的小球A和B,两球之间用一根长为L的轻杆相连,下面的小球B离斜面底端的高度为h。两球从静止开始下滑,不计球与地面碰撞时的机械能损失,且地面光滑。求:(1)两球在光滑水平面上运动时的速度大小;(2)此过程中杆对A球所做的功;(3)分析杆对A球做功的情况。θhAB图4-25