2014-2015学年广东省深圳市宝安区九年级(上)期末数学试卷一、选择题(共12小题,每小题3分,满分36分)1.如图的几何体是由五个同样大小的正方体搭成的,其主视图是()A.B.C.D.2.一元二次方程x2﹣9=0的解是()A.x=﹣3B.x=3C.x1=3,x2=﹣3D.x=813.如图,晚上小亮在路灯下经过,在小亮由A处径直走到B处这一过程中,他在地上的影子()A.逐渐变短B.先变短后变长C.逐渐变长D.先变长后变短4.某学习小组做“用频率估计概率”的实验时,统计了某一结果出现的频率,绘制了如下的表格,则符合这一结果的实验最有可能的是()实验次数10020030050080010002000频率0.3650.3280.3300.3340.3360.3320.333A.一副去掉大小王的普通扑克牌洗匀后,从中任抽一张牌的花色是红桃B.在“石头、剪刀、布”的游戏中,小明随机出的是“剪刀”C.抛一个质地均匀的正六面体骰子,向上的面点数是5D.抛一枚硬币,出现反面的概率5.顺次连结对角线相等的四边形的四边中点所得图形是()A.正方形B.矩形C.菱形D.以上都不对6.一次函数y=kx+b与反比例函数y=在同一直角坐标系中的大致图象如图所示,则下列判断正确的是()A.k>0,b>0B.k>0,b<0C.k<0,b>0D.k<0,b<07.一元二次方程x2﹣5x+7=0的根的情况是()A.有两个不相等的实数根B.只有一个实数根C.有两个相等的实数根D.没有实数根8.如图,已知AB∥CD∥EF,那么下列结论正确的是()A.=B.=C.=D.=9.某种气球内充满了一定质量的气体,当温度不变时,气球内气体的气压P(kPa)是气体体积V(m3)的反比例函数,其图象如图所示.当气球内气体的气压大于150kPa时,气球将爆炸.为了安全,气体体积V应该是()A.小于0.64m3B.大于0.64m3C.不小于0.64m3D.不大于0.64m310.下列命题中,假命题的是()A.四边形的外角和等于内角和B.对角线互相平分的四边形是平行四边形C.矩形的四个角都是直角D.相似三角形的周长比等于相似比的平方11.某城市2012年底已有绿化面积380公顷,经过两年绿化,绿化面积逐年增加,到2014年底增加到480公顷.设绿化面积平均每年的增长率为x,由题意,所列方程正确的是()A.380(1+x)2=480B.380(1+2x)=480C.380(1+x)3=480D.380+380(1+x)+380(1+x)2=48012.如图,平行于BC的直线DE把△ABC分成的两部分面积相等,则=()A.B.C.D.二、填空题(共4小题,每小题3分,满分12分)13.小明有黑色、蓝色、橙色西服各一套,有红色、黄色领带各一条,随机从中分别取一套西服和一条领带,则他刚好穿黑色西服又打红色领带的概率是.14.若x=﹣2是关于x的一元二次方程x2+3x+m+1=0的一个解,则m=.15.如图,在平面直角坐标系中,直线l∥x轴,且直线l分别与反比例函数y=(x>0)和y=﹣(x<0)的图象交于点P、Q,连结PO、QO,则△POQ的面积为.16.如图,已知矩形ABCD边CD上有一点P,且AP=AB,M是线段AP上的一点(不与点P、A重合),N是线段AB延长线上的一点,且BN=PM,连结MN交PB于点F,过点M作ME⊥BP于点E,若AD=8,PC=4,则线段EF的长是.三、解答题(共7小题,满分52分)17.计算:﹣22++(2015﹣π)0+||18.解方程:x2+6x﹣7=0.19.一个不透明的口袋里装有分别标有汉字“美”、“丽”、“宝”、“安”的四个小球,除汉字不同之外,小球没有任何区别,每次摸球前先搅拌均匀再摸球.(1)若从中任取一个球,球上的汉字刚好是“宝”的概率是;(2)甲从中任取一球,不放回,再从中任取一球,请用树状图或列表法,求甲取出的两个球上的汉字恰能组成“美丽”或“宝安”的概率P1;(3)乙从中任取一球,记下汉字后放回袋中,再从中任取一球,请用树状图或列表法,求乙取出的两个球上的汉字恰能组成“美丽”或“宝安”的概率P2.20.如图,已知菱形ABCD中,对角线AC、BD相交于点O,过点C作CE∥BD,过点D作DE∥AC,CE与DE相交于点E.(1)求证:四边形CODE是矩形;(2)若AB=5,AC=6,求四边形CODE的周长.21.小明为同学们去书城购买《名著》,书城推出如下优惠条件:如果一次性购买不超过10套,单价为100元;如果一次性购买多于10套,那么每增加1套,购买的所有《名著》的单价降低2元,但单价不得低于70元,按此优惠条件,小明同学一次性购买1600元,请你计算一下他能买多少套《名著》?22.如图,正方形ABCD中,点F是BC边上一点,连结AF,以AF为对角线作正方形AEFG,边FG与正方形ABCD的对角线AC相交于点H,连结DG.(1)填空:若∠BAF=18°,则∠DAG=°;(2)若当点F在线段BC上运动时(不与B、C两点重合),设FC=x,DG=y,试求y与x之间的函数关系式;(3)若=,请求出的值.23.直线l:y=﹣2x+2m(m>0)与x,y轴分别交于A、B两点,点M是双曲线y=(x>0)上一点,分别连接MA、MB.(1)如图,当点A(,0)时,恰好AB=AM;∠M1AB=90°试求M1的坐标;(2)如图,当m=3时,直线l与双曲线交于C、D两点,分别连接OC、OD,试求△OCD面积;(3)如图,在双曲线上是否存在点M,使得以AB为直角边的△MAB与△AOB相似?如果存在,请直接写出点M的坐标;如果不存在,请说明理由.