人工智能第二章35

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

第二章智能Agent内容提要Agents和环境理性Agent环境的性质Agent的类型与结构Agent通过感知器感知环境并通过执行器对所处的环境产生影响人类Agent眼睛,耳朵为感知器手,脚,声道为执行器机器人Agent摄像头,红外距测仪为感知器马达为执行器Agent函数将任何感知历史数据映射为行为:Agent程序通过在物理系统上运行来实现Agent函数Agent=体系结构+程序感知器:地点和内容(eg.[A,Dirty])行为:向左,向右,洗尘,无操作理性agent:对于每一可能的感知数据序列,一个理性的agent应该采取一个行为以达到最大的性能。理性判断的4个因素性能度量先验知识可以完成的行动截至到此刻的感知序列一个Agent应该根据它感知的信息和它能够进行的行为而做正确的事情正确的行为将使得Agent能够取得最大的成功性能度量:一个客观的标准来评价Agent的行为的成功性Eg.真空器agent的性能度量可以是它清洗区域的数量,花费的时间,消耗的能量,产生的噪音等等Eg.真空洗尘器8个小时内清理的灰尘总量来度量性能?以行为来度量性能不如以结果来度量性能全知:明确知道它的行动产生的实际结果并且作出相应的动作理性不等同于全知(已知的知识都是有限的)理性不等于完美:理性是使期望的性能最大化完美是使实际的性能最大化理性agent能够进行信息收集。理性的agent应该具有自主性,能够进行学习从环境的感知信息中根据历史经验来学习任务环境:包括性能(Performance),环境(Environment),agent的执行器(Actuators)和传感器(Sensors),英文缩写为PEAS对于每一个智能agent,必须说明其PEAS参数Eg.自动驾驶出租车性能度量环境执行器传感器Eg.自动驾驶出租车性能度量:安全性,快速性,交通违规,舒适度,利润环境:马路,其他交通工具,行人,乘客执行器:方向盘,加速油门,刹车,语音合成器传感器:摄像头,红外或声纳,速度表,GPS,键盘,麦克风Environment:Patient,hospital,staffActuators:Screendisplay(questions,tests,diagnoses,treatments,referrals)Sensors:Keyboard(entryofsymptoms,findings,patient'sanswers)Eg.医疗诊断系统性能度量:病人的健康性,病人花费环境:病人,医院,工作人员执行器:显示屏(询问,测试,诊断,治疗方案)传感器:键盘(输入症状,现场检测,病人的回答)14Eg.挑拣零件机器人性能度量:正确挑拣的零件所占的百分比环境:零件传送带,容器执行器:机器人手臂和手传感器:摄像头,关节感知器15Eg.交互式英语教学者性能度量:最大化学生成绩环境:学生执行器:显示屏(练习题,建议,正确答案)传感器:键盘16完全可观察的vs.部分可观察的一个agent的传感器在每个时间点上都能获取环境的完整状态一个agent的传感器在每个时间点上都能获取环境的部分状态真空洗尘器?自动驾驶汽车?单agentvs.多agent单agent独自运行eg.字谜游戏多agent同时运行eg.国际象棋国际象棋vs.驾驶出租车?确定的vs.随机的环境的下一个状态完全取决于当前状态和agent执行的动作部分可观察?出租车驾驶?真空吸尘器?片段式的vs.延续式的agent的经历被分成一个个原子片段,在每个片段中agent感知信息并完成单个行动,下一个片段不依赖于以前的片段检查次品零件的机器人?国际象棋?18静态的vs.动态的环境在agent计算的时候不会变化(vs.会变化)半动态的:环境本身不变化但agent的性能评价随时间变化出租车,国际象棋,填字游戏?离散的vs.连续的环境的状态,时间的处理方式以及agent的感知信息和行动都有离散/连续之分国际象棋,出租车驾驶?环境的性质决定了agent的设计最难处理的情况:部分可观察的,随机的,连续的,动态的,延续式的,多agent的一个agent用agent函数来表示agent函数将感知数据序列映射为行为Agent程序以传感器得到的当前感知信息为输入以执行器的行动为输出仅仅以当前感知为输入而不是以整个历史感知为输入缺点表太大创建表时间长非自主性,需人工填写即使能够学习,也需要很长的时间四种基本的类型简单反射agent基于模型的反射agent基于目标的agent基于效用的agent基于当前的感知选择行动,不关注感知历史环境是完全可观察的还是部分可观察的?Eg.真空吸尘器问题,刹车问题Agent根据感知历史维持内部状态Agent随时更新内部状态信息除了根据感知信息之外,还要根据目标信息来选择行动效率比较低,需要推理搜索和规划算法当达到目标的行为有很多种的时候,需要考虑效率环境是部分可观察的和随机的,不确定下的决策过程可以通过基于效用的agent来实现。效用的作用多目标相冲突时多目标在不确定环境中一个目标有多种行为可以达到时4个组件性能元件:相当于整个agent评判元件:反映性能元件做得如何学习元件:负责改进提高问题产生器:提出一些新的有建设性的探索尝试Eg.出租车行驶Agents和环境理性Agent环境的性质Agent的类型与结构QA?

1 / 35
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功