16.2二次根式的乘除(2)学习目标运用二次根式的除法法则:进行相关计算及逆用;baba1.什么叫二次根式?叫做二次根式。式子)0(aa2.两个基本性质:复习提问2a2aa(a≥0)-a(a<0)==∣a∣=a(a≥0)思考:二次根式的除法有没有类似的法则呢?3.二次根式的乘法:算术平方根的积等于各个被开方数积的算术平方根积的算术平方根等于积中各因式的算术平方根.复习提问abba)0,0(baabba(a≥0,b≥0)94,94.14916,4916.29494491649160,0bababa两个二次根式相除,等于把被开方数相除,作为商的被开方数32327474计算下列各式,观察计算结果,你发现什么规律?规律:0,0ba例4:计算1812323241解:83243241222418231812318123293baba两个二次根式相除,等于把被开方数相除,作为商的被开方数33试一试1050(2)232)1(计算:10751436152112)4(解:原式)3(原式)4(107514=710521=6=2111526=23652=65=如果根号前有系数,就把系数相除,仍旧作为二次根号前的系数。41623223215105010502如果被开方数是带分数,应先化成假分数商的算术平方根:即商的算术平方根,等于被除式与除式的算术平方根的商。=ba0,0ba例5:化简103100310031解:yxyxyx35925925322ba1631)2(1003)1(=)(16312注意:如果被开方数是带分数,应先化成假分数。16191619=419=29253yx9721)(281(2)025xx1966401690904×.×.)(2216(3)0,0bcaba359259259721===)(解:x=x=x)(5925812581222cab=acb=acb=acb)(4416163222211239148013301966401690901966401690904=×.×.=×.×.=×.×.)(试一试例6:计算babababa0,0baa283272325315353..1解法555351525152515555353..2解法515363332332327232aaaaaaaa2242228283解:1在二次根式的运算中,最后结果一般要求(1)分母中不含有二次根式.(2)最后结果中的二次根式要求写成最简的二次根式的形式.把分母中的根号化去,使分母变成有理数,这个过程叫做分母有理化。最简二次根式二次根式化简后,②被开方数中不含分母;①被开方数中不含能开尽方的因式;满足上述条件的二次根式叫做最简二次根式。③分母中不含根号。判断下列各式是否为最简二次根式?12ba245952mmx3021143xyx2422525mm(5)();(2)();(3)();(4)();(1)();(6)();(7)();√×××××√练习一:把下列各式化简(分母有理化):73241-)(baa22+)(40323)(73241-)(=+)(baa22=)(40323解:注意:要进行根式化简,关键是要搞清楚分式的分子和分母都乘什么,有时还要先对分母进行化简。773724••-=;-=21144bababaa2+++•babaa2++=10232•10106102••=6020=3056052==1.在横线上填写适当的数或式子使等式成立。练习二:2.把下列各式的分母有理化:8381-)(27232)(a10a53)(xy4y242)(3.化简:95191÷)-()(-)(4122348192÷6234=)(•1a3-)(()=a-1•522)(()=10•81)(()=42a1-535、如图,在Rt△ABC中,∠C=900,∠A=300,AC=2cm,求斜边AB的长ABC。成立的条件是--=--、等式____________5m3m5m3m1。成立的条件是--=--、等式____________5m3m5m3m1.4m55m1、解:要使等式成立,m必须满足m-30m-501、二次根式的除法:即两个二次根式相除,将它们的被开方数相除。2、商的算术平方根:即商的算术平方根,等于被除式与除式的算术平方根的商。=3.最简二次根式:二次根式化简后,②被开方数中不含分母;①被开方数中不含能开尽方的因式;满足上述条件的二次根式叫做最简二次根式。③分母中不含根号。