【创新方案】2015高考数学一轮复习(知识回扣+热点突破+能力提升)合情推理与演绎推理 理 北师大版

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

-1-第五节合情推理与演绎推理【考纲下载】1.了解合情推理的含义,能利用归纳和类比等进行简单的推理,了解合情推理在数学发现中的作用.2.了解演绎推理的重要性,掌握演绎推理的基本模式,并能运用它们进行一些简单推理.3.了解合情推理和演绎推理之间的联系和差异.1.归纳推理(1)定义:根据一类事物中部分事物具有某种属性,推断该类事物中每一个事物都有这种属性的推理方式.(2)特点:①是由部分到整体,由个别到一般的推理.②利用归纳推理得出的结论不一定是正确的.2.类比推理(1)定义:由于两类不同对象具有某些类似的特征,在此基础上,根据一类对象的其他特征,推断另一类对象也具有类似的其他特征的推理过程.(2)特点:①是两类事物特征之间的推理.②利用类比推理得出的结论不一定是正确的.3.合情推理(1)定义:是根据实验和实践的结果,个人的经验和直觉,已有的事实和正确的结论(定义、公理、定理等),推测出某些结果的推理方式.(2)分类:归纳推理与类比推理.4.演绎推理演绎推理是根据已知的事实和正确的结论,按照严格的逻辑法则得到新结论的推理过程.1.归纳推理的结论一定正确吗?提示:不一定,结论是否真实,还需要经过严格的逻辑证明和实践检验.2.演绎推理所获得的结论一定可靠吗?提示:不一定,只有前提是正确的,推理形式是正确的,结论才一定是真实的,错误的前提则可能导致错误的结论.1.下列表述正确的是()①归纳推理是由部分到整体的推理;②归纳推理是由一般到一般的推理;③演绎推理是由一般到特殊的推理;④类比推理是由特殊到一般的推理;⑤类比推理是由特殊到特殊的推理.A.①②③B.②③④C.②④⑤D.①③⑤解析:选D由归纳推理、类比推理及演绎推理的特征可知①③⑤正确.2.下面几种推理是合情推理的是()①由圆的性质类比出球的有关性质;②由直角三角形、等腰三角形、等边三角形的内角和是180°,归纳出所有三角形的内角和都是180°;-2-③某次考试张军成绩是100分,由此推出全班同学成绩都是100分;④三角形的内角和是180°,四边形的内角和是360°,五边形的内角和是540°,由此得出凸多边形的内角和是(n-2)·180°.A.①②B.①③C.①②④D.②④解析:选C①是类比推理,②④是归纳推理,③是非合情推理.3.“因为指数函数y=ax是增函数(大前提),而y=13x是指数函数(小前提),所以函数y=13x是增函数(结论)”,上面推理的错误在于()A.大前提错误导致结论错B.小前提错误导致结论错C.推理形式错误导致结论错D.大前提和小前提错误导致结论错解析:选A当a1时,y=ax为增函数;当0a1时,y=ax为减函数.故大前提错误.4.在平面上,若两个正三角形的边长的比为1∶2,则它们的面积比为1∶4.类似地,在空间中,若两个正四面体的棱长的比为1∶2,则它们的体积比为________.解析:因为两个正四面体的棱长的比为1∶2,则底面积之比为1∶4,底面对应的高之比是1∶2,所以体积之比为1∶8.答案:1∶85.(教材习题改编)在△ABC中,不等式1A+1B+1C≥9π成立;在四边形ABCD中,不等式1A+1B+1C+1D≥162π成立;在五边形ABCDE中,不等式1A+1B+1C+1D+1E≥253π成立,猜想,在n边形A1A2…An中,成立的不等式为________.解析:∵9=32,16=42,25=52,且1=3-2,2=4-2,3=5-2,…,故在n边形A1A2…An中,有不等式1A1+1A2+…+1An≥n2n-成立.答案:1A1+1A2+…+1An≥n2n-(n≥3)高频考点考点一归纳推理1.归纳推理是每年高考的常考内容,题型多为选择题和填空题,难度稍大,属中高档题.2.高考对归纳推理的考查常有以下几个命题角度:(1)归纳推理与等式或不等式“共舞”问题;(2)归纳推理与数列“牵手”问题;(3)归纳推理与图形变化“相融”问题.[例1](1)(2013·陕西高考)观察下列等式:12=1,12-22=-3,12-22+32=6,12-22+32-42=-10,……照此规律,第n个等式可为________.(2)(2013·湖北高考)古希腊毕达哥拉斯学派的数学家研究过各种多边形数.如三角形数-3-1,3,6,10,…,第n个三角形数为nn+2=12n2+12n.记第n个k边形数为N(n,k)(k≥3),以下列出了部分k边形数中第n个数的表达式:三角形数N(n,3)=12n2+12n,正方形数N(n,4)=n2,五边形数N(n,5)=32n2-12n,六边形数N(n,6)=2n2-n,……可以推测N(n,k)的表达式,由此计算N(10,24)=________.(3)(2014·青岛模拟)某种平面分形图如下图所示,一级分形图是由一点出发的三条线段,长度均为1,两两夹角为120°;二级分形图是在一级分形图的每条线段的末端出发再生成两条长度为原来13的线段,且这两条线段与原线段两两夹角为120°,…,依此规律得到n级分形图.一级分形图二级分形图三级分形图①n级分形图中共有________条线段;②n级分形图中所有线段长度之和为________.[自主解答](1)观察规律可知,第n个式子为12-22+32-42+…+(-1)n+1n2=(-1)n+1nn+2.(2)N(n,k)=akn2+bkn(k≥3),其中数列{ak}是以12为首项,12为公差的等差数列;数列{bk}是以12为首项,-12为公差的等差数列.所以N(n,24)=11n2-10n,当n=10时,N(10,24)=11×102-10×10=1000.(3)①分形图的每条线段的末端出发再生成两条线段,由题图知,一级分形图有3=(3×2-3)条线段,二级分形图有9=(3×22-3)条线段,三级分形图中有21=(3×23-3)条线段,按此规律n级分形图中的线段条数an=(3×2n-3)(n∈N*).②分形图的每条线段的末端出发再生成两条长度为原来13的线段,∴n级分形图中第n级的所有线段的长度为bn=3×23n-1(n∈N*),∴n级分形图中所有线段长度之和为Sn=3×230+3×231+…+3×23n-1=3×1-23n1-23=9-9×23n.[答案](1)12-22+32-42+…+(-1)n+1n2=(-1)n+1nn+2(2)1000(3)①3×2n-3②9-9×23n归纳推理问题的常见类型及解题策略-4-(1)与等式或不等式“共舞”问题.观察所给的几个等式或不等式两边式子的特点,注意是纵向看,发现隐含的规律.(2)与数列“牵手”问题.先求出几个特殊现象,归纳所得的结论是尚属未知的一般现象,该结论超越了前提所包含的范围,从而由特殊的结论推广到一般结论.(3)与图形变化“相融”问题.合理利用特殊图形归纳推理得出结论,并用赋值检验法验证其真伪性.1.设函数f(x)=xx+2(x0),观察:f1(x)=f(x)=xx+2,f2(x)=f(f1(x))=x3x+4,f3(x)=f(f2(x))=x7x+8,f4(x)=f(f3(x))=x15x+16,……根据以上事实,由归纳推理可得:当n∈N*且n≥2时,fn(x)=f(fn-1(x))=________.解析:根据题意知,分子都是x,分母中的常数项依次是2,4,8,16,…,可知fn(x)的分母中常数项为2n,分母中x的系数为2n-1,故fn(x)=f(fn-1(x))=xn-x+2n.答案:xn-x+2n2.如图的倒三角形数阵满足:①第1行的n个数,分别是1,3,5,…,2n-1;②从第2行起,各行中的每一个数都等于它肩上的两数之和;③数阵共有n行.当n=2012时,第32行的第17个数是________.1357911……48121620……12202836…………解析:每行的第1个数分别是1,4,12,32,…,记为数列{an},它的通项公式为an=n×2n-1,则第32行的第1个数为a32=32×232-1=236,而在第32行的各个数成等差数列,且公差为232,所以第17个数是236+(17-1)×232=236+24×232=2×236=237.答案:2373.仔细观察下面○和●的排列规律:○●○○●○○○●○○○○●○○○○○●○○○○○○●……,若依此规律继续下去,得到一系列的○和●,那么在前120个○和●中,●的个数是________.解析:进行分组○●|○○●|○○○●|○○○○●|○○○○○●|○○○○○○●|……,则前n组两种圈的总数是f(n)=2+3+4+…+(n+1)=nn+2,易知f(14)=119,f(15)=135,故n=14.答案:14考点二类比推理-5-[例2]如图所示,面积为S的平面凸四边形的第i条边的边长记为ai(i=1,2,3,4),此四边形内任一点P到第i条边的距离记为hi(i=1,2,3,4),若a11=a22=a33=a44=k,则1×h1+2×h2+3×h3+4×h4=2Sk.类比以上性质,体积为V的三棱锥的第i个面的面积记为Si(i=1,2,3,4),此三棱锥内任一点Q到第i个面的距离记为Hi(i=1,2,3,4),若S11=S22=S33=S44=k,则H1+2H2+3H3+4H4值为()A.4VkB.3VkC.2VkD.Vk[自主解答]在平面凸四边形中,连接P点与各个顶点,将其分成四个小三角形,根据三角形面积公式,得S=12(a1h1+a2h2+a3h3+a4h4)=12(kh1+2kh2+3kh3+4kh4)=k2(h1+2h2+3h3+4h4).所以h1+2h2+3h3+4h4=2Sk.类似地,连接Q点与三棱锥的四个顶点,将其分成四个小三棱锥,则有V=13(S1H1+S2H2+S3H3+S4H4)=13(kH1+2kH2+3kH3+4kH4)=k3(H1+2H2+3H3+4H4),所以H1+2H2+3H3+4H4=3Vk.[答案]B【方法规律】类比推理的一般步骤(1)找出两类事物之间的相似性或一致性.(2)用一类事物的性质去推测另一类事物的性质,得出一个明确的命题(猜想).已知数列{an}为等差数列,若am=a,an=b(n-m≥1,m,n∈N*),则am+n=nb-man-m.类比等差数列{an}的上述结论,对于等比数列{bn}(bn0,n∈N*),若bm=c,bn=d(n-m≥2,m,n∈N*),则可以得到bm+n=________.解析:法一:设数列{an}的公差为d1,则d1=an-amn-m=b-an-m.所以am+n=am+nd1=a+n·b-an-m-6-=bn-amn-m.类比推导方法可知:设数列{bn}的公比为q,由bn=bmqn-m,可知d=cqn-m,所以q=n-mdc,所以bm+n=bmqn=c·n-mdcn=n-mdncm.法二:(直接类比)设数列{an}的公差为d1,数列{bn}的公比为q,因为等差数列中an=a1+(n-1)d1,等比数列中bn=b1qn-1,因为am+n=nb-man-m,所以bm+n=n-mdncm.答案:n-mdncm考点三演绎推理[例3]已知函数f(x)=ax+bx,其中a0,b0,x∈(0,+∞),试确定f(x)的单调区间,并证明在每个单调区间上的增减性.[自主解答]法一:设0x1x2,则f(x1)-f(x2)=ax1+bx1-ax2+bx2=(x2-x1)·ax1x2-b.当0x1x2≤ab时,∵a0,b0,∴x2-x10,0x1x2ab,ax1x2b,∴f(x1)-f(x2)0,即f(x1)f(x2),∴f(x)在0,ab上是减函数;当x2x1≥ab0时,x2-x10,x1x2ab,ax1x2b,∴f(x1)-f(x2)0,即f(x1)f(x2),∴f(x)在ab,+∞上是增函数.法二:∵

1 / 13
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功