三角形全等的判定SSS练习题1.如图,AC=DF,BC=EF,AD=BE,∠BAC=72°,∠F=32°,则∠ABC=2.如图,已知AB=AC,BD=DC,那么下列结论中不正确的是()A.△ABD≌△ACDB.∠ADB=90°C.∠BAD是∠B的一半D.AD平分∠BAC3.如图,是一个风筝模型的框架,由DE=DF,EH=FH,就说明∠DEH=∠DFH。试用你所学的知识说明理由。4.如图,已知线段AB、CD相交于点O,AD、CB的延长线交于点E,OA=OC,EA=EC,请说明∠A=∠C.中考1.(2009年怀化)如图,AD=BC,AB=DC.求证:∠A+∠D=180°2.(2009年四川省宜宾市)已知:如图,在四边形ABCD中,AB=CB,AD=CD.求证:∠C=∠A.参考答案:随堂检测:1、②①③.解析:本题是利用SSS画全等三角形的尺规作图步骤,“作直线BP,在BP上截取BC=a”也可表达为“画线段BC=a”2、由全等可得AD垂直平分BC3、公共边相等是两个三角形全等的一个条件.由于AC=AD,BC=BD,AB=AB,所以,△ABC≌△ABD(SSS),所以,∠CAB=∠DAB,即AB平分∠CAD.拓展提高:1、760.解析:先证明全等,再利用全等三角形的对应角相等和三角形内角和定理答案:2、C.解析:利用SSS证明两个三角形全等3、由于已知DE=DF,EH=FH,连结DH,这是两三角形的公共边,于是,在△DEH和△DFH中,DEDFEHFHDHDH所以△DEH≌△DFH(SSS),所以∠DEH=∠DFH(全等三角形的对应角相等)。4、根据条件OA=OC,EA=EC,OA、EA和OC、EC恰好分别是△EAC和△EBC的两条边,故可以构造两个三角形,利用全等三角形解决解:连结OE在△EAC和△EBC中OAOCEAECOEOE===(已知)(已知)(公共边)∴△EAC≌△EBC(SSS)∴∠A=∠C(全等三角形的对应角相等)体验中考:1、由条件可构造两个全等三角形证明:连结AC∵AD=BC,AB=DC,AC=CA∴△ABC≌△CDA∴∠BAC=∠ACD∴AB∥CD∴∠A+∠D=180°2、证明:连接BD.在△ABD和△CBD中,∵AB=CB,AD=CD,BD=BD,∴△ABD≌△CBD.∴∠C=∠A.