一类求代数式最值问题的常规解法----王力

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

一类求代数式最值问题的常规解法学大教育镇江区域王力例1已知ba,为正实数,且2ba,则1222bbaa的最小值为__________解法一:分离常数,基本不等式,32221))1(213(311)1()112(311112211)1(21222abbababababbaabbaa取时423,2361)1(2babaab,故原式的最小值是3222解法二:导函数法1312231)3(23)2(212222222aaaaaaaaaabbaaabba令22)3(12)()20(,1312)(aaafaaaaf,令2360)(aaf,所以函数)(af在)236,0(上是减函数,在)2,236(上是增函数,故3222)236()(minfaf,所以原式的最小值是3222例2已知正实数ba,满足3211ba,则1411ba的最小值为___________解法一:基本不等式51411411,34113211bbaababbaaba令ybbxaa1,1,有34yx,则原式475))(41(43541yxyxyx取时9,5998,944bayxyxxy,即原式的最小值为47解法二:柯西不等式由柯西不等式得:bbaaa16811)41(14,1681)451(1)45(11222两式相加得:8273216811681168116261411baba即4716268271411ba,当且仅当9,59ba等号成立解法三:

1 / 2
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功