几种常见数列通项的求法【基础题过关】1.已知数列{}na满足12nnaa,而且11a,求通项na.2.若数列na满足:11a,12nnaa(*nN),求12naaa.3.已知数列{}na中,11a,11113nnaa,则50a__________________.一、利用数列的“周期性”求通项:【例题分析】1.已知数列na满足10a,13()31nnnaanaN,求20a【巩固练习】数列{}na中,112a,111nnaa,(2n且nN),求2003a。二、“叠加”法求通项:对形如1()nnaafn的数列的通项,可用累加法。【例题分析】2.在数列{}na中,12a,1nnaacn(c是常数,1n,2,3,…),且1a,2a,3a成公比不为1的等比数列.⑴求c的值;⑵求{}na的通项公式.【巩固练习】1.已知数列{}na满足121nnaan,11a,求数列{}na的通项公式。2.已知数列{}na满足122a,12nnaan,则数列{}na的通项公式为,nan的最小值为3.已知数列{}na满足12nnnaa,13a,求na.4.在数列{}na中,12a,11ln(1)nnaan,则naA.2lnnB.2(1)lnnnC.2lnnnD.1lnnn三、“叠乘”法求通项:对形如1()nnafna的数列的通项,可用累乘法。【例题分析】3.已知数列{}na满足113a,123(2)21nnnaann,求na.【巩固练习】1.已知{}na中,12nnnaan且12a,求数列{}na的通项公式。2.已知数列{}na满足12nnanan*()nN,且11a,则na_________.四、“倒数”法求通项:【例题分析】4.数列{}na中,若21a,nnnaaa311,则4a【巩固练习】1.已知数列{}na中,11a,121nnnaaa,则它的通项公式na_________.2.已知数列{}na中,其中11a,且当2n时,1121nnnaaa,求通项公式na。3.已知数列{}na的首项123a,121nnnaaa,1,2,3,n….证明:数列1{1}na是等比数列.4.数列}{na满足31a,115nnnnaaaa,求通项na.五、已知数列的和求通项:【例题分析】5.已知数列}{na满足211233333nnnaaaa,nN,求数列}{na的通项;【巩固练习】1.数列{}na中,123232nnaaana,求na.2.已知数列{}na满足11a,123123(1)nnaaaana(2n),求{}na的通项。六、“待定系数法”求通项:【例题分析】6.数列{}na中,11a,121nnaa(*nN),则na=【巩固练习】1.在数列{}na中,若11a,123nnaa,则该数列的通项na=___________.2.在数列{}na中,1a=1,当2n时,有132nnaa,求na.3.已知数列{}na满足135nnaa,11a,求数列{}na的通项公式几种常见数列通项的求法答案【基础题过关】1.已知数列{}na满足12nnaa,而且11a,求通项na.21nan2.若数列na满足:11a,12nnaa(*nN),求12naaa.21nnS3.已知数列{}na中,11a,11113nnaa,则50a__________________.32nan,50352a一、利用数列的“周期性”求通项:【例题分析】1.(05年高考湖南卷试题)已知数列na满足10a,13()31nnnaanaN,则20a等于A.0B.3C.3D.32解析:令1n,则203301a;令2n,则333331a;令3n,则433031a.由此发现41aa,可猜想此数列具有周期性,2023aa∴.故选B.点评:由1a及递推关系先求出前几项,再归纳、猜想出na,这一方法比较适用于选择、填空题.对于解答题,猜想出na后,还应进一步证明(比如用数学归纳法).【巩固练习】(02年希望杯)数列{}na中,112a,111nnaa,(2n且nN),求2003a。解:11,2a令2,3,4,n,则有23411,2,,2aaa,3,T则200321.aa二、“叠加”法求通项:对形如1()nnaafn的数列的通项,可用累加法。【例题分析】2.(2007北京文16理15)在数列{}na中,12a,1nnaacn(c是常数,1n,2,3,…),且1a,2a,3a成公比不为1的等比数列.⑴求c的值;⑵求{}na的通项公式.解:(I)12a,22ac,323ac,因为1a,2a,3a成等比数列,所以2(2)2(23)cc,解得0c或2c.当0c时,123aaa,不符合题意舍去,故2c.(II)当2n≥时,由于21aac,322aac,1(1)nnaanc,所以1(1)[12(1)]2nnnaancc.又12a,2c,故22(1)2(23)nannnnn,,.当1n时,上式也成立,所以22(12)nannn,,.【巩固练习】1.已知数列{}na满足121nnaan,11a,求数列{}na的通项公式。解:由121nnaan得121nnaan则11232211()()()()nnnnnaaaaaaaaaa[2(1)1][2(2)1](221)(211)1nn2[(1)(2)21](1)1nnn(1)2(1)12nnn,所以数列{}na的通项公式为:2nan2.(石景山文14)已知数列{}na满足122a,12nnaan,则数列{}na的通项公式为,nan的最小值为.222nann,54255a3.已知数列{}na满足12nnnaa,13a,求na.122nnaa=21n4.(08江西卷5)在数列{}na中,12a,11ln(1)nnaan,则naA.2lnnB.2(1)lnnnC.2lnnnD.1lnnn三、“叠乘”法求通项:对形如1()nnafna的数列的通项,可用累乘法。【例题分析】3.已知数列{}na满足113a,12321nnnaan(2n),求na.解:当2n时,23121aaaaaan…1nnaa,1412nan;当1n时,311a也满足,1412nan.【巩固练习】1.已知{}na中,12nnnaan且12a,求数列{}na的通项公式。4(1)nann2.(2007东城一模)已知数列{}na满足12nnanan*()nN,且11a,则na_________.(1)2nnna四、“倒数”法求通项:【例题分析】4.数列{}na中,若21a,nnnaaa311,则4aA.192B.1516C.58D.43解:31311,3111nnnnnnnaaaaaaa又naa1,2111是首项为21公差3的等差数列。562,2562533)1(211nannnann19254624a所以选A【巩固练习】1.已知数列{}na中,11a,121nnnaaa,则它的通项公式na_________.121nan2.已知数列{}na中,其中,且当n≥2时,,求通项公式。解:将两边取倒数得:,这说明是一个等差数列,首项是,,11a1211nnnaaana1211nnnaaa2111nnaa}1{na111a公差为2,所以,即.3.已知数列{}na的首项123a,121nnnaaa,1,2,3,n….(Ⅰ)证明:数列1{1}na是等比数列;4.数列}{na满足31a,115nnnnaaaa,求通项na.31514nan五、已知数列的和求通项:【例题分析】5.已知数列}{na满足211233333nnnaaaa,nN,求数列}{na的通项13nna【巩固练习】1.数列{}na中,123232nnaaana,求na.12,(1)2,(2)nnnann2.已知数列{}na满足11a,123123(1)nnaaaana(2n),求{}na的通项。!nan六、“待定系数法”求通项:【例题分析】6.(06年福建高考题)数列{}na中,11a,121nnaa(*nN),则na=A.n2B.12nC.12nD.12n,归纳总结:若数列na满足qpqpaann,1(1为常数),则令)(1nnapa来构造等比数列,并利用对应项相等求的值,求通项公式。【巩固练习】1.(06重庆)在数列{}na中,若11a,123nnaa,则该数列的通项na________.123nna2.在数列{}na中,1a=1,当2n时,有132nnaa,求na.解:由13nnaa+2,两边同加1,得)1(311nnaa(2n)故1na是以211a为首项,公比为3的等比数列,故1321nna.说明:本题亦可由231nnaa,13nnaa+2(2n)两式相减得:)(311nnnnaaaa得nnaa1为等比数列求解.3.已知数列{}na满足135nnaa,11a,求数列{}na的通项公式解:设135nnaa可化为:13()nnaAaA展开得:132nnaaA对比系数得:25A,52A所以,数列52na是以152a为首项,3为公比的一个等比数列。1115573()3222nnnaa173522nna122)1(11nnan121nan