【2013年高考数学必看】10-1随机抽样

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

10-1随机抽样基础巩固强化1.问题:①三种不同的容器中分别装有同一型号的零件400个、200个、150个,现在要从这750个零件中抽取一个容量为50的样本;②从20名学生中选出3名参加座谈会.方法:Ⅰ.随机抽样法Ⅱ.系统抽样法Ⅲ.分层抽样法.其中问题与方法能配对的是()A.①Ⅰ,②ⅡB.①Ⅲ,②ⅠC.①Ⅱ,②ⅠD.①Ⅲ,②Ⅱ[答案]C[解析]①容器与抽取的样本无关,且总体数比较大,故可用系统抽样来抽取样本,②总体与样本都较少,可用随机抽样法.故选C.2.(2013·安徽省安庆二中第一学期段考)某校共有学生2000名,各年级男、女生人数如表,已知在全校学生中随机抽取1名,抽到二年级女生的概率是0.19,现用分层抽样的方法在全校抽取64名学生,则应在三年级抽取的学生人数为()一年级二年级三年级女生373xy男生377370zA.24B.18C.16D.12[答案]C[解析]由条件知,二年级女生有2000×0.19=380名,∴三年级有学生2000-(373+377+380+370)=500名,由分层抽样定义知,在三年级应抽取500×642000=16名.3.(2012·浙江嘉兴基础测试)一个单位有职工80人,其中业务人员56人,管理人员8人,服务人员16人,为了解职工的某种情况,决定采取分层抽样的方法,抽取一个容量为10的样本,每个管理人员被抽到的概率为()A.180B.124C.18D.14[答案]C[解析]本题主要考查分层抽样的特点.据题意管理人员这一层中每个个体被抽到的概率等于从总体中抽取10个样本每个个体被抽取的概率,即其概率为1080=18.4.(文)将参加夏令营的600名学生编号为:001,002,…,600.采用系统抽样方法抽取一个容量为50的样本,且随机抽得的号码为003,这600名学生分住在三个营区.从001到300在第Ⅰ营区,从301到495在第Ⅱ营区,从496到600在第Ⅲ营区.三个营区被抽中的人数依次为()A.26,16,8B.25,17,8C.25,16,9D.24,17,9[答案]B[解析]根据系统抽样的特点可知抽取的号码间隔为60050=12,故抽取的号码构成以3为首项,公差为12的等差数列.在第Ⅰ营区001~300号恰好有25组,故抽取25人,在第Ⅱ营区301~495号有195人,共有16组多3人,因为抽取的第一个数是3,所以Ⅱ营区共抽取17人,剩余50-25-17=8人需从Ⅲ营区抽取.(理)(2012·山东理,4)采用系统抽样方法从960人中抽取32人做问卷调查.为此将他们随机编号为1,2,…,960,分组后在第一组采用简单随机抽样的方法抽到的号码为9.抽到的32人中,编号落入区间[1,450]的人做问卷A,编号落入区间[451,750]的人做问卷B,其余的人做问卷C,则抽到的人中,做问卷B的人数为()A.7B.9C.10D.15[答案]C[解析]采用系统抽样方法从960人中抽取32人,将整体分成32组,每组30人,即l=30,第k组的号码为(k-1)30+9,令451≤(k-1)30+9≤750,而k∈Z,解得16≤k≤25,则满足16≤k≤25的整数k有10个.5.(文)(2011·安徽名校联考)某市电视台为调查节目收视率,想从全市3个区按人口数用分层抽样的方法抽取一个容量为n的样本,已知3个区人口数之比为,如果最多的一个区抽出的个体数是60,则这个样本的容量=()A.96B.120C.180D.240[答案]B[解析]设样本容量为n,则52+3+5=60n,∴n=120.(理)(2012·大连部分中学联考)某公司有普通职员150人、中级管理人员40人、高级管理人员10人,现采用分层抽样的方法从这200人中抽取40人进行问卷调查,若在已抽取的40人的问卷中随机抽取一张,则所抽取的恰好是一名高级管理人员的答卷的概率为()A.14B.15C.120D.1100[答案]C[解析]由分层抽样知,在普通职员中抽30人,中级管理人员抽8人,高级管理人员中抽2人.由古典概型知,所抽取的恰好是一名高级管理人员的答卷的概率为120,选C.6.某企业三月中旬生产A、B、C三种产品共3000件,根据分层抽样的结果,企业统计员制作了如下的统计表格.由于不小心,表格中A、C产品的有关数据已被污染看不清楚,统计员记得A产品的样本容量比C产品的样本容量多10件,根据以上信息,可得C产品的数量是()产品类别ABC产品数量(件)1300样本容量(件)130A.900件B.800件C.90件D.80件[答案]B[解析]设A、C产品数量分别为x件、y件,则由题意可得:x+y+1300=3000,x-y×1301300=10,∴x+y=1700,x-y=100,∴x=900,y=800.故选B.7.一个总体分为A、B两层,其个体数之比为,用分层抽样法从总体中抽取一个容量为10的样本,已知B层中甲、乙都被抽到的概率为128,则总体中的个体数是________.[答案]40[解析]设x、y分别表示A、B两层的个体数,由题设易知B层中应抽取的个体数为2,∴2yy-1=128,解得y=8或y=-7(舍去),∵xy=,∴x=32,x+y=40.8.(2011·安徽皖南八校联考)某班有50名学生,现要采取系统抽样的方法在这50名学生中抽出10名学生,将这50名学生随机编号1~50号,并分组,第一组1~5号,第二组6~10号,……,第十组46~50号,若在第三组中抽得号码为12的学生,则在第八组中抽得号码为________的学生.[答案]37[解析]组距为5,(8-3)×5+12=37.9.(2011·蚌埠二中质检)某工厂对一批产品进行抽样检测,根据抽样检测后的产品净重(单位:g)数据绘制的频率分布直方图如图所示,已知产品净重的范围是[96,106],若样本中净重在[96,100)的产品个数是24,则样本中净重在[98,104)的产品个数是________.[答案]60[解析]设样本容量为x,则x·(0.05+0.1)×2=24,∴x=80,∴样本中净重在[98,104)的产品个数是x·(0.1+0.15+0.125)×2=80×0.375×2=60.10.(文)(2011·北京石景山测试)为预防甲型H1N1病毒暴发,某生物技术公司研制出一种新流感疫苗,为测试该疫苗的有效性(若疫苗有效的概率小于90%,则认为测试没有通过),公司选定2000个流感样本分成三组,测试结果如下表:A组B组C组疫苗有效673xy疫苗无效7790z已知在全体样本中随机抽取1个,抽到B组疫苗有效的概率是0.33.(1)求x的值;(2)现用分层抽样的方法在全体样本中抽取360个测试结果,问应在C组抽取多少个?(3)已知y≥465,z≥30,求不能通过测试的概率.[解析](1)∵在全体样本中随机抽取1个,抽取B组疫苗有效的概率约为其频率,即x2000=0.33,∴x=660.(2)C组样本个数为y+z=2000-(673+77+660+90)=500,现用分层抽样的方法在全体样本中抽取360个测试结果,则应在C组抽取个数为3602000×500=90.(3)设测试不能通过的事件为A,C组疫苗有效与无效的可能的情况记为(y,z),由(2)知y+z=500,且y,z∈N,所有基本事件有:(465,35),(466,34),(467,33),(468,32),(469,31),(470,30)共6个,若测试不能通过,则77+90+z2000×(1-0.9),即z33,事件A包含的基本事件有:(465,35),(466,34)共2个,∴P(A)=26=13,故不能通过测试的概率为13.(理)有关部门要了解地震预防知识在学校的普及情况,命制了一份有10道题的问卷到各学校做问卷调查.某中学A、B两个班各被随机抽取5名学生接受问卷调查,A班5名学生得分为5、8、9、9、9;B班5名学生得分为6、7、8、9、10.(1)请你估计A、B两个班中哪个班的问卷得分要稳定一些;(2)如果把B班5名学生的得分看成一个总体,并用简单随机抽样方法从中抽取样本容量为2的样本,求样本平均数与总体平均数之差的绝对值不小于1的概率.[解析](1)∵A班的5名学生的平均得分为(5+8+9+9+9)÷5=8,方差s21=15[(5-8)2+(8-8)2+(9-8)2+(9-8)2+(9-8)2]=2.4;B班的5名学生的平均得分为(6+7+8+9+10)÷5=8,方差s22=15[(6-8)2+(7-8)2+(8-8)2+(9-8)2+(10-8)2]=2.∴s21s22.∴B班的预防知识的问卷得分要稳定一些.(2)从B班5名同学中用简单随机抽样方法抽取容量为2的样本共有不同抽法有10种,∵总体平均数为x-=15×(6+7+8+9+10)=8,∴其中样本6和7,6和8,8和10,9和10的平均数满足条件,故所求的概率为410=25.能力拓展提升11.(2011·北京东城模拟)在100个零件中,有一级品20个,二级品30个,三级品50个,从中抽取20个作为样本.①采用简单随机抽样法:抽签取出20个样本;②采用系统抽样法:将零件编号为00,01,……,99,然后平均分20组抽取20个样本;③采用分层抽样法:从一级品,二级品,三级品中共抽取20个样本.下列说法正确的是()A.无论采用哪种方法,这100个零件中每一个零件被抽到的概率都相等B.①②两种抽样方法,这100个零件中每一个零件被抽到的概率都相等;③并非如此C.①③两种抽样方法,这100个零件中每一个零件被抽到的概率都相等;②并非如此D.采用不同的抽样方法,这100个零件中每一个零件被抽到的概率是各不相同的[答案]A12.(2011·深圳模拟)某学校在校学生2000人,为了迎接“2010年广州亚运会”,学校举行了“迎亚运”跑步和登山比赛活动,每人都参加而且只参与其中一项比赛,各年级参与比赛的人数情况如下表:高一年级高二年级高三年级跑步人数abc登山人数xyz其中abc=,全校参与登山的人数占总人数的14.为了了解学生对本次活动的满意程度,从中抽取一个200人的样本进行调查,则高三年级参与跑步的学生中应抽取()A.15人B.30人C.40人D.45人[答案]D[解析]由题意,全校参与跑步的人数占总人数的34,高三年级参与跑步的人数为34×2000×310=450,由分层抽样的概念知,高三年级参与跑步的学生中应抽取110×450=45人,故选D.13.(文)(2011·九江二模)某工厂的三个车间在12月份共生产了3600双皮靴,在出厂前要检查这批产品的质量,决定采用分层抽样的方法进行抽取,若从一、二、三车间抽取的产品数分别为a、b、c,且a、b、c构成等差数列,则第二车间生产的产品数为()A.800B.1000C.1200D.1500[答案]C[解析]因为a、b、c成等差数列,所以2b=a+c,∴a+b+c3=b,∴第二车间抽取的产品数占抽样产品总数的三分之一,根据分层抽样的性质可知,第二车间生产的产品数占总数的三分之一,即为1200双皮靴.(理)某校对高三年级的学生进行体检,现将高三男生的体重(单位:kg)数据进行整理后分成六组,并绘制频率分布直方图(如图所示).已知图中从左到右第一、第六小组的频率分别为0.16、0.07,第一、第二、第三小组的频率成等比数列,第三、第四、第五、第六小组的频率成等差数列,且第三小组的频数为100,则该校高三年级的男生总数为()A.480B.440C.420D.400[答案]D[解析]设第一、第二、第三小组的频率构成的等比数列公比为q,第三、第四、第五、第六小组的频率构成的等差数列公差为d,则由题意知0.16+0.16q+0.16q2+0.16q2+d+0.16q2+2d+0.16q2+3d=1,0.16q2+3d=0.07,即0.16+0.16q+0.64q2+6d=1,0.16q2+3d=0.07.消去d得,16q2+8q-35=0.∵q0,∴

1 / 17
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功