二00九年南宁市中等学校招生考试数学本试卷分第Ⅰ卷和第Ⅱ卷,满分120分,考试时间120分钟.注意:答案一律填写在答题卷上,在试题卷上作答无效..........考试结束,将本试卷和答题卷一并交回.第Ⅰ卷(选择题共36分)一、选择题:(本大题共12小题,每小题3分,共36分)每小题都给出代号为A、B、C、D的四个结论,其中只有一个是正确的.使用机改卷的考生........,请用2B铅笔在答题卷上将选定的答案标号涂黑;使用非机改卷的六县考生...........,请用黑(蓝黑)墨水笔将每小题选定的答案的序号填写在答题卷相应的表格内.1.13的相反数是()A.3B.13C.3D.132.图1是一个五边形木架,它的内角和是()A.720°B.540°C.360°D.180°3.今年6月,南宁市举行了第五届泛珠三角区域经贸合作洽谈会.据估算,本届大会合同投资总额达2260亿元.将2260用科学记数法表示为(结果保留2个有效数字)()A.32.310B.32.210C.32.2610D.40.23104.与左边三视图所对应的直观图是()5.不等式组11223xx≤的解集在数轴上表示为()6.要使式子1xx有意义,x的取值范围是()A.1xB.0xC.10xx且D.10xx≥-且7.如图2,将一个长为10cm,宽为8cm的矩形纸片对折两次后,沿所得矩形两邻边中点的连线(虚线)剪下,再打开,得到的菱形的面积为()图1-1012A.-1012B.-1012C.-1012D.A.B.C.D.A.210cmB.220cmC.240cmD.280cm8.把多项式2288xx分解因式,结果正确的是()A.224xB.224xC.222xD.222x9.在反比例函数1kyx的图象的每一条曲线上,yx都随的增大而增大,则k的值可以是()A.1B.0C.1D.210.如图3,ABO是⊙的直径,弦303cmCDABECDBO于点,°,⊙的半径为,则弦CD的长为()A.3cm2B.3cmC.23cmD.9cm11.已知二次函数2yaxbxc(0a)的图象如图4所示,有下列四个结论:20040bcbac①②③④0abc,其中正确的个数有()A.1个B.2个C.3个D.4个12.从2、3、4、5这四个数中,任取两个数pqpq和,构成函数2ypxyxq和,并使这两个函数图象的交点在直线2x的右侧,则这样的有序数对pq,共有()A.12对B.6对C.5对D.3对ABCD图2图3CABOED1图4Oxy3第Ⅱ卷(非选择题,共84分)二、填空题:(本大题共6小题,每小题2分,共12分)13.如图5,直线a、b被c所截,且11202ab∥,°,则°.14.计算:22aba.15.三角尺在灯泡O的照射下在墙上形成影子(如图6所示).现测得20cm50cmOAOA,,这个三角尺的周长与它在墙上形成的影子的周长的比是.16.有五张分别印有圆、等腰三角形、矩形、菱形、正方形图案的卡片(卡片中除图案不同外,其余均相同),现将有图案的一面朝下任意摆放,从中任意抽取一张,抽到有中心对称图案的卡片的概率是.17.如图7,一艘海轮位于灯塔P的东北方向,距离灯塔402海里的A处,它沿正南方向航行一段时间后,到达位于灯塔P的南偏东30°方向上的B处,则海轮行驶的路程AB为_____________海里(结果保留根号).18.正整数按图8的规律排列.请写出第20行,第21列的数字.考生注意:第三至第八大题为解答题,要求在答题卷...上写出解答过程.三、(本大题共2小题,每小题满分6分,共12分)19.计算:12009311sin6022°20.先化简,再求值:cab12图5图6AA′O灯三角尺投影图7BACP东北45°30°第一行第二行第三行第四行第五行第一列第二列第三列第四列第五列1251017…4361118…9871219…1615141320…2524232221………图82111211xxx,其中2x四、(本大题共2小题,每小题满分10分,共20分)21.为迎接国庆60周年,某校举行以“祖国成长我成长”为主题的图片制作比赛,赛后整理参赛同学的成绩,并制作成图表如下:分数段频数频率60≤x<70300.1570≤x<80m0.4580≤x<9060n90≤x<100200.1请根据以上图表提供的信息,解答下列问题:(1)表中mn和所表示的数分别为:__________mn,__________;(2)请在图9中,补全频数分布直方图;(3)比赛成绩的中位数落在哪个分数段?(4)如果比赛成绩80分以上(含80分)可以获得奖励,那么获奖率是多少?22.已知ABC△在平面直角坐标系中的位置如图10所示.(1)分别写出图中点AC和点的坐标;(2)画出ABC△绕点C按顺时针方向旋转90ABC°后的△;(3)求点A旋转到点A所经过的路线长(结果保留π).图9频数1209060300分数(分)90100806070图10yx87654321087654321BCA五、(本大题满分10分)23.如图11,PA、PB是半径为1的O⊙的两条切线,点A、B分别为切点,60APBOPABCOD°,与弦交于点,与⊙交于点.(1)在不添加任何辅助线的情况下,写出图中所有的全等三角形;(2)求阴影部分的面积(结果保留π).六、(本大题满分10分)24.南宁市狮山公园计划在健身区铺设广场砖.现有甲、乙两个工程队参加竞标,甲工程队铺设广场砖的造价y甲(元)与铺设面积2mx的函数关系如图12所示;乙工程队铺设广场砖的造价y乙(元)与铺设面积2mx满足函数关系式:ykx乙.(1)根据图12写出甲工程队铺设广场砖的造价y甲(元)与铺设面积2mx的函数关系式;(2)如果狮山公园铺设广场砖的面积为21600m,那么公园应选择哪个工程队施工更合算?七、(本大题满分10分)25.如图13-1,在边长为5的正方形ABCD中,点E、F分别是BC、DC边上的点,且AEEF,2BE.(1)求EC∶CF的值;(2)延长EF交正方形外角平分线CPP于点(如图13-2),试判断AEEP与的大小关系,并说明理由;(3)在图13-2的AB边上是否存在一点M,使得四边形DMEP是平行四边形?若存在,请给予证明;若不存在,请说明理由.图11PAOBDC图12y元480004800028000050010002mx图13-1ADCBE图13-2BCEDAFPF八、(本大题满分10分)26.如图14,要设计一个等腰梯形的花坛,花坛上底长120米,下底长180米,上下底相距80米,在两腰中点连线(虚线)处有一条横向甬道,上下底之间有两条纵向甬道,各甬道的宽度相等.设甬道的宽为x米.(1)用含x的式子表示横向甬道的面积;(2)当三条甬道的面积是梯形面积的八分之一时,求甬道的宽;(3)根据设计的要求,甬道的宽不能超过6米.如果修建甬道的总费用(万元)与甬道的宽度成正比例关系,比例系数是5.7,花坛其余部分的绿化费用为每平方米0.02万元,那么当甬道的宽度为多少米时,所建花坛的总费用最少?最少费用是多少万元?图142009年南宁市中等学校招生考试数学试题参考答案与评分标准一、选择题(本大题共12小题,每小题3分,共36分)题号123456789101112答案DBAACDACDBCB二、填空题(本大题共6小题,每小题2分,共12分)13.6014.32ab15.2516.4517.4034018.420三、(本大题共2小题,每小题满分6分,共12分)19.解:12009311sin6022°=331222······················································································4分=12········································································································5分3···········································································································6分20.解:2111211xxx=11211xxxxx··············································································3分22x·······································································································4分当2x时,原式222········································································5分4··················································································6分四、(本大题共2小题,每小题满分10分,共20分)21.解:(1)900.3mn,;·······································································4分(2)图略.··································································································6分(3)比赛成绩的中位数落在:70分~80分.························································8分(4)获奖率为:6020100200%=40%(或0.3+0.1=0.4)·····································10分22.解:(1)04A,、31C,;······································································2分(2)图略.··································································································6分(3)32AC····························································································7分9032π180AA························································································9分32π2····································································································10分五、(本大题满分10分)23.解:(1)ACOBCOAPCBPCPAOPBO△≌△,△≌△,△≌△····················3分(写出一个全等式子得1分)(2)PA、PB为O⊙的切线