智能一对一,解决作业难题,提高数学成绩【考点训练】平行线的判定-1一、选择题(共5小题)1.(2013•抚顺)如图,直线l1、l2被直线l3、l4所截,下列条件中,不能判断直线l1∥l2的是()A.∠1=∠3B.∠5=∠4C.∠5+∠3=180°D.∠4+∠2=180°2.(2013•永州)如图,下列条件中能判定直线l1∥l2的是()A.∠1=∠2B.∠1=∠5C.∠1+∠3=180°D.∠3=∠53.(2013•铜仁地区)如图,在下列条件中,能判断AD∥BC的是()A.∠DAC=∠BCAB.∠DCB+∠ABC=180°C.∠ABD=∠BDCD.∠BAC=∠ACD4.(2012•梧州)如图,点E在AC的延长线上,下列条件中能判断AB∥CD的是()A.∠3=∠4B.∠D=∠DCEC.∠1=∠2D.∠D+∠ACD=180°5.(2010•仙桃)对于图中标记的各角,下列条件能够推理得到a∥b的是()A.∠1=∠2B.∠2=∠4C.∠3=∠4D.∠1+∠4=180°二、填空题(共3小题)(除非特别说明,请填准确值)6.(2012•贵阳)如图,已知∠1=∠2,则图中互相平行的线段是_________.智能一对一,解决作业难题,提高数学成绩.(2012•南宁)如图所示,用直尺和三角尺作直线AB,CD,从图中可知,直线AB与直线CD的位置关系为_________.8.(2010•铜仁地区)如图,请填写一个你认为恰当的条件_________,使AB∥CD.三、解答题(共2小题)(选答题,不自动判卷)9.(2013•邵阳)将一幅三角板拼成如图所示的图形,过点C作CF平分∠DCE交DE于点F.(1)求证:CF∥AB.(2)求∠DFC的度数.10.(1999•广西)先作图,再证明.(1)在所给的图形(如图)中完成下列作图(保留作图痕迹)①作∠ACB的平分线CD,交AB于点D;②延长BC到点E,使CE=CA,连接AE;(2)求证:CD∥AE.智能一对一,解决作业难题,提高数学成绩【考点训练】平行线的判定-1参考答案与试题解析一、选择题(共5小题)1.(2013•抚顺)如图,直线l1、l2被直线l3、l4所截,下列条件中,不能判断直线l1∥l2的是()A.∠1=∠3B.∠5=∠4C.∠5+∠3=180°D.∠4+∠2=180°考点:平行线的判定.1528156分析:依据平行线的判定定理即可判断.解答:解:A、已知∠1=∠3,根据内错角相等,两直线平行可以判断,故命题正确;B、不能判断;C、同旁内角互补,两直线平行,可以判断,故命题正确;D、同旁内角互补,两直线平行,可以判断,故命题正确.故选B.点评:正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键,不能遇到相等或互补关系的角就误认为具有平行关系,只有同位角相等、内错角相等、同旁内角互补,才能推出两被截直线平行.2.(2013•永州)如图,下列条件中能判定直线l1∥l2的是()A.∠1=∠2B.∠1=∠5C.∠1+∠3=180°D.∠3=∠5考点:平行线的判定.1528156分析:平行线的判定定理有①同位角相等,两直线平行,②内错角相等,两直线平行,③同旁内角互补,两直线平行,根据以上内容判断即可.解答:解:A、根据∠1=∠2不能推出l1∥l2,故本选项错误;B、∵∠5=∠3,∠1=∠5,∴∠1=∠3,即根据∠1=∠5不能推出l1∥l2,故本选项错误;C、∵∠1+∠3=180°,∴l1∥l2,故本选项正确;D、根据∠3=∠5不能推出l1∥l2,故本选项错误;故选C.点评:本题考查了平行线的判定的应用,注意:平行线的判定定理有:①同位角相等,两直线平行,②内错角相智能一对一,解决作业难题,提高数学成绩等,两直线平行,③同旁内角互补,两直线平行.3.(2013•铜仁地区)如图,在下列条件中,能判断AD∥BC的是()A.∠DAC=∠BCAB.∠DCB+∠ABC=180°C.∠ABD=∠BDCD.∠BAC=∠ACD考点:平行线的判定.1528156分析:根据各选项中各角的关系及利用平行线的判定定理,分别分析判断AD、BC是否平行即可.解答:解:A、∵∠DAC=∠BCA,∴AD∥BC(内错角相等,两直线平行).故本选项正确;B、根据“∠DCB+∠ABC=180°”只能判定“DC∥AB”,而非AD∥BC.故本选项错误;C、根据“∠ABD=∠BDC”只能判定“DC∥AB”,而非AD∥BC.故本选项错误;D、根据“∠BAC=∠ACD”只能判定“DC∥AB”,而非AD∥BC.故本选项错误;故选A.点评:本题考查了平行线的判定.解答此类要判定两直线平行的题,可围绕截线找同位角、内错角和同旁内角.4.(2012•梧州)如图,点E在AC的延长线上,下列条件中能判断AB∥CD的是()A.∠3=∠4B.∠D=∠DCEC.∠1=∠2D.∠D+∠ACD=180°考点:平行线的判定.1528156分析:由平行线的判定定理可证得,A,B,D能证得AC∥BD,只有C能证得AB∥CD.注意掌握排除法在选择题中的应用.解答:解:A、∵∠3=∠4,∴AC∥BD.故本选项不能判断AB∥CD;B、∵∠D=∠DCE,∴AC∥BD.故本选项不能判断AB∥CD;C、∵∠1=∠2,∴AB∥CD.故本选项能判断AB∥CD;D、∵∠D+∠ACD=180°,∴AC∥BD.故本选项不能判断AB∥CD.故选C.点评:此题考查了平行线的判定.注意掌握数形结合思想的应用.5.(2010•仙桃)对于图中标记的各角,下列条件能够推理得到a∥b的是()智能一对一,解决作业难题,提高数学成绩.∠1=∠2B.∠2=∠4C.∠3=∠4D.∠1+∠4=180°考点:平行线的判定.1528156分析:在复杂的图形中具有相等关系的两角首先要判断它们是否是同位角或内错角,被判断平行的两直线是否由“三线八角”而产生的被截直线.解答:解:A、∠1=∠2,因为它们不是a、b被截得的同位角或内错角,不符合题意;B、∠2=∠4,因为它们不是a、b被截得的同位角或内错角,不符合题意;C、∠3=∠4,因为它们不是a、b被截得的同位角或内错角,不符合题意;D、∠1+∠4=180°,∠1的对顶角与∠4是a、b被截得的同旁内角,符合题意.故选D.点评:正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键,不能遇到相等或互补关系的角就误认为具有平行关系,只有同位角相等、内错角相等、同旁内角互补,才能推出两被截直线平行.二、填空题(共3小题)(除非特别说明,请填准确值)6.(2012•贵阳)如图,已知∠1=∠2,则图中互相平行的线段是AB∥CD.考点:平行线的判定.1528156专题:探究型.分析:直接根据平行线的判定定理进行解答即可.解答:解:∵∠1=∠2(已知),∴AB∥CD(内错角相等,两直线平行).故答案为:AB∥CD.点评:本题考查的是平行线的判定定理,即内错角相等,两直线平行.7.(2012•南宁)如图所示,用直尺和三角尺作直线AB,CD,从图中可知,直线AB与直线CD的位置关系为平行.考点:平行线的判定.1528156分析:根据同位角相等,两直线平行判断.解答:解:根据题意,∠1与∠2是三角尺的同一个角,所以∠1=∠2,所以,AB∥CD(同位角相等,两直线平行).故答案为:平行.智能一对一,解决作业难题,提高数学成绩点评:本题考查了平行线的判定熟练掌握同位角相等,两直线平行,并准确识图是解题的关键.8.(2010•铜仁地区)如图,请填写一个你认为恰当的条件∠CDA=∠DAB或∠FCD=∠FAB或∠BAC+∠ACD=180°,使AB∥CD.考点:平行线的判定.1528156专题:开放型.分析:欲证AB∥CD,在图中发现AB、CD被直线AC或AD所截,然后根据平行线的判定方法寻找同位角或内错角或同旁内角就可.解答:解:根据同位角相等,两条直线平行,可以添加∠FCD=∠FAB;根据内错角相等,两条直线平行,可以添加∠CDA=∠DAB;根据同旁内角互补,两条直线平行,可以添加∠BAC+∠ACD=180°.点评:解答此类要判定两直线平行的题,可围绕截线找同位角、内错角和同旁内角.本题是一道探索性条件开放性题目,能有效地培养“执果索图”的思维方式与能力.三、解答题(共2小题)(选答题,不自动判卷)9.(2013•邵阳)将一幅三角板拼成如图所示的图形,过点C作CF平分∠DCE交DE于点F.(1)求证:CF∥AB.(2)求∠DFC的度数.考点:平行线的判定;角平分线的定义;三角形内角和定理.1528156专题:压轴题.分析:(1)首先根据角平分线的性质可得∠1=45°,再有∠3=45°,再根据内错角相等两直线平行可判定出AB∥CF;(2)利用三角形内角和定理进行计算即可.解答:(1)证明:∵CF平分∠DCE,∴∠1=∠2=∠DCE,∵∠DCE=90°,∴∠1=45°,∵∠3=45°,∴∠1=∠3,智能一对一,解决作业难题,提高数学成绩∴AB∥CF;(2)∵∠D=30°,∠1=45°,∴∠DFC=180°﹣30°﹣45°=105°.点评:此题主要考查了平行线的判定,以及三角形内角和定理,关键是掌握内错角相等,两直线平行.10.(1999•广西)先作图,再证明.(1)在所给的图形(如图)中完成下列作图(保留作图痕迹)①作∠ACB的平分线CD,交AB于点D;②延长BC到点E,使CE=CA,连接AE;(2)求证:CD∥AE.考点:平行线的判定;角平分线的定义.1528156专题:作图题;证明题.分析:(1)本题主要考查角平分线的尺规作法,(2)利用内错角相等两直线平行证明即可.解答:(1)解:利用尺规作图,如右图;①1.以∠ACB的顶点C为圆心0,任意长为半径画弧.交于两边于点G,F;2.截取GF长度,以GF长为半径,分别以点G,点F为圆心画弧,两弧交点为点D;3.连接CD.射线CD就是所要求作的.②延长BC到点E,使CE=CA,连接AE.(2)证明:∵AC=CE,AC⊥CE,∴△ACE为等腰直角三角形,∴∠CAE=45°.又∵CD平分∠ACB.∴∠ACD=45°.∴∠ACD=∠CAE.∴CD∥AE.点评:(1)注意尺规作图要保留痕迹,要求写出作图方法;(2)主要考查了两直线平行的判定.智能一对一,解决作业难题,提高数学成绩关注中学生习题网官方微信公众号,免费学习资源、学习方法、学习资讯第一时间掌握。微信公众账号:xitibaike扫描二维码关注: