【综述】酶学知识在临床疾病诊断及治疗上的应用要求

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

【综述】酶学知识在临床疾病诊断及治疗上的应用要求目前临床主要以检测指标作为依据对疾病的诊断作出较为准确的判断。其中,酶学上的应用占了相当一部分。所以,从临床疾病诊断以及治疗的角度去对酶学知识的具体化了解和应用深化是十分有必要的。本文献综述旨在对现有的临床应用的常见几种酶学指标检测作出一个较为直观的知识汇总和部分拓展,作为基础医学和临床医学的一次应用上的联系。阅读文献:吗啡依赖相关的酶学研究进展——生理学与生化学的紧密联系,酶学体系上对某种疾病机制的解释和指标上对该疾病的指导。新生儿-长期以来,胆红素对神经系统毒性作用的研究较为深入。近年随着对胆红素生理功能毒性作用的进一步研究。发现胆红素对心脏肾脏有一定的毒性影响uJ。心肌酶分布在全身组织中,特别是心、肝、肺、骨骼肌、肾、脑中含量高,以上组织损伤均可使细胞膜的完整性丧失。使ASr(谷草转氨酶)、CPK(肌酸激酶)、LDH(乳酸脱氢酶)逸出,致血清中含量增高,特别是肌酸激酶同工酶(CK—MB)绝大部分存在于心肌细胞浆内,心肌以外细胞含量甚微,是一种心肌特异性酶。通过测定血清心肌酶的变化,可以反映心肌受损程度J。新生儿高胆红素血症引起心肌损害的病因及发病机制尚不清楚。有人认为,可能因为未结合胆红素为脂溶性,可以透过细胞膜。进入细胞内干扰细胞的代谢功能,使细胞受损bJ。本组高胆患儿心肌酶及同工酶活性均有不同程度增高,黄疸愈重。心肌酶活性升高愈明显。且经退黄综合治疗后,黄疽减退。心肌酶活性亦随之下降,治疗前后比较有显著差异(P0.01),提示新生儿高胆红素血症时存在心肌损害。本组中,有25例高胆患儿做心电图检查,大多数心电图正常,故仅凭心电图检查不能发现早期心肌损害。高胆患儿应同时作心肌酶谱检查,早期应注意保护心脏功能,以避免严重心肌损害。第七章诊断酶学本世纪初临床就开始测定体液中的酶来诊断疾病,如Wohlgemuth早在1908年就测定尿液中淀粉酶(AMY)以诊断急性胰腺炎;30年代临床测定碱性磷酸酶(ALP)用于诊断骨骼疾病,随后发现不少肝胆疾病特别在出现梗阻性黄疸时此酶常明显升高。这些酶成为当时临床实验室的常规测定项目,直到60年代ALP仍是世界上测定次数最多的酶。但在50年代以前,酶测定在检验科常规工作中只占很少一部分。诊断酶学的真正发展还是从50年代用分光光度法建立了连续监测酶活性浓度方法开始,它可以测定不少用旧的“固定时间法”不能测定的酶,并用于诊断疾病。结果发现乳酸脱氢酶(LD)、天冬酸氨基转移酶(AST)和α-羟丁酸脱氢酶(HBDH)在诊断急性心肌梗死(AMI)上的灵敏度远远超过其他诊断方法。在60年代初又肯定了肌酸激酶(CK)在诊断AMI比上面几个酶更早出现增高,特异性也高,目前此酶已取代ALP成为世界范围内测定次数最多的酶。同时发现丙氨酸氨基转移酶(ALT)、AST对肝炎诊断不仅敏感度高,而且早在肝炎黄疸前期就明显升高。这些成就引起了当时临床和实验室工作者广泛的兴趣和注意,先后进行了大量临床和实验工作,尝试和评价过成百种酶测定的临床意义,其中十种左右酶已成为目前检验科常用的重要测定项目。酶测定约占目前临床化学总工作量的1/4到1/2。随着广泛地应用和研究,也发现总酶活性浓度测定对疾病诊断的特异性远不如人们所开始预期的那样高。从70年代开始,学者逐渐将注意力集中到同工酶测定上来,发现CK-MB和LD1诊断AMI比上述总酶特异性更高,CK-MB已成为公认的诊断AMI的“金指标”,此二项同工酶测定也成为各大医院检验科必测项目。80年代以来,发现组织中同工酶进入体液后,有可能出现变化。如Ck-MM可进一步分为Ck-MM1、MM2和MM3,Ck-MB可分为MB1和MB2。在诊断AMI上优于CK总酶和同工酶,成为目前临床酶学上的一个研究热点。从70年代起,随着免疫学和技术方法的发展,用抗原抗体反应有可能直接测定微量的酶蛋白,为酶学在临床医学上的发展开拓了一个新的领域。本章将以血液中酶变化为重点,首先研究其变化的总规律,其次将从临床角度来探讨这些酶测定在临床诊断疾病、判断疗效和疾病预后中的价值。第一节概述长期以来临床将血清酶变化的机制理解得很简单:即病变细胞将其细胞中高浓度的酶释放到血液中,二者间酶浓度梯度越大,则血清中酶升高程度越大。这种理解远不能解释各种各样的临床现象,例如肝中AST绝对量约是ALT的4倍,但在急性肝炎时ALT增高程度远大于AST,而在慢性肝病特别是肝硬化时血中AST又比ALT高,单从上述浓度梯度理论显然很难说清。必须全面了解各种影响血清酶变化的因素。首先要了解血清酶的分类,因为不同类型酶变化模式将是不一样的。一、血清酶的分类虽然绝大多数血清酶含量极低,在血液中没有任何功能,但也确有一小部分酶在细胞内合成后分泌到血液中,并行使一定功能。其典型例子就是一些与凝血过程有关的酶,如凝血酶原、Ⅹ因子、Ⅻ因子等,还有与纤溶有关的酶如纤溶酶原、纤溶酶原活化因子等。它们一般以失活或酶原状态分泌入血,在一定情况下被活化,引起一系列病理或生理变化。它们在血中浓度往往很高,甚至超过大多数器官细胞内浓度,因此在血中的变化常不是升高而是下降。它们大都在肝脏合成,并以恒定速度释放入血,肝实质病变时,血中浓度明显下降,常作为肝功能试验的一部分。这类对临床有价值的酶还有胆碱酯酶(CHE)、铜氧化酶、脂蛋白脂酶等,在血中含量都以mg%计,人们将此类酶命名为血浆特异酶。表7-1临床常用的酶*EC编号推荐名简写1.1.1.27乳酸脱氢酶LD、LDH1.1.1.37苹果酸脱氢酶MD、MDH1.1.1.41异柠檬酸脱氢酶ICD、ICDH1.4.1.3谷氨酸脱氢酶GDH、GLDH2.3.2.2γ-谷氨酰基转移酶GGT、γ-GT(GGTP)2.6.1.1天门冬酸氨基转移酶AST、GOT2.7.3.2肌酸激酶CK(CPK)3.1.1.3脂肪酶LPS3.1.1.8胆碱酯酶CHE3.1.3.1碱性磷酸酶ALP(AKP)3.1.3.2酸性磷酸酶ACP3.2.1.1α-淀粉酶AMY(AMS)3.4.11.2氨基酸芳香酰胺酶LAP4.1.2.13果糖二磷酸醛缩酶ALD2.1.3.3鸟氨酸氨甲酰基转移酶OCT3.1.3.55′-核苷酸酶5′-NA(5′-NT)*EC:国际酶学委员会其它酶可归为非血浆特异酶,它们在血中浓度很低,常以微克计算,并且无何功能。可进一步分为分泌酶和代谢酶,一些外分泌器官分泌的酶可有小部分入血,如α-淀粉酶(AMY)、脂肪酶(LPS)、胃蛋白酶原等等,它们在血中一般也以失活状态存在,疾病时可以升高,但是如分泌细胞破坏,血中浓度也可下降,往往将ALP、酸性磷酸酶(ACP)也归到此类,认为ALP由骨细胞分泌,ACP由前列腺分泌。其余绝大多数酶都参与细胞内代谢,随正常细胞的新陈代谢,极少数进入血液,细胞内外浓度差异悬殊,病理情况下极易升高,一般很少考虑其浓度下降的临床意义。有些书还讲一步将代谢酶分为一般酶和组织专一酶,看来无此必要,从临床观点看,单测总酶变化就要得出病变存在组织或器官的结论,显然是很困难的。二、血清酶变化的病理生理机制前面已提到不同类型的酶,其变化机制会有所不同,如把所有可能影响因素都考虑进去,可以得到一个总的酶由细胞内进入血液以及在血中变化的总的模式图(图7-1):图7-1血清酶变化机制式中k1,k2分别代表细胞内酶进入细胞间隙或(和)直接进入血液的速率,如某些种类细胞直接与血液接触,不需经过组织间隙就直接进入血液,则血中酶变化不仅出现早而且明显。K3和k4分别代表酶从两个不同方向通过毛细血管壁的速率,某些组织或器官中毛细血管壁很致密,这些值较低,则可能有相当一部分酶经由淋巴管才进入血液,此速率常数为k5。而k6、k7则代表了酶在细胞间隙和血液的清除速率。K8代表酶被血中细胞或网状内皮系统细胞摄入的速率常数。少数酶属于血浆特异酶和分泌酶,如细胞出现增生性病变,则酶可以产生增多,并进入血液,反之也可能产生减少,从而引起血中酶浓度下降。不同组织或器管中酶进入血中途径不一,清除方法也有差异,这就构成不同疾病酶变化的多样性,也只有在总的规律基础上,掌握各种器官疾病的特殊性,才能解释和掌握酶变化规律,正确用于临床。从临床角度,可以将上述各种因素归纳为以下四个方面加以叙述。(一)细胞酶的释放细胞靠细胞膜来维持其完整性,细胞膜代谢十分活跃,依靠膜上一系列ATP依赖的离子泵来维持细胞内外Na+、K+和Ca2+浓度的差异,这过程需要耗费大量能源,当缺氧或能量代谢障碍、ATP供应减少、离子泵功能障碍时,无法维持正常离子的梯度差,改变了细胞的内渗透压,从而引起细胞肿胀,特别是Ca2+进入细胞内,引起细胞膜的泡状突出,膜孔隙增大,酶开始从细胞内向外溢出,其速度和数量受多种因素影响。主要的有:⒈细胞内外酶浓度的差异对于非血浆特异酶,细胞内外浓度差可在千倍以上,因此只要有少量细胞坏死或者细胞有轻度病变,血中酶浓度就可能明显升高。有人计算过只要有1/1000肝细胞坏死,所释放的酶可使血中酶增加一倍。鸟氨酸氨甲酰基转移酶(OCT)在细胞内外浓度差异可达到105:1,此酶在肝脏病变时变化极为明显,可惜的是,由于测定方法不方便,临床应用不多。但对于血浆特异酶而言,由于细胞内外浓度差异小,细胞病变很少引起血中酶浓度明显升高。⒉酶在细胞内定位与存在形式从上述酶释放的机制不难理解最容易释放入血的是胞质中游离的酶,如ALT,LD等。而在细胞亚显微结构中的酶则较难溢出,除非细胞病变进一步加重,不局限于细胞膜。特别是线粒体酶,由于有两层致密的线粒体膜,往往当细胞出现坏死病变时,才开始释放入血。在一个典型的AMI病程中,线粒体AST是最后一个出现升高的酶,而且到达峰值时间也最迟。临床通过线体酶的测定,有助于判断疾病的不良预后。又如肝细胞中AST大部分存在于线粒体,虽然其绝对量超过ALT,但在急性肝炎时,由于细胞病变较轻,胞质中含有大量ALT,故血中ALT往往超过AST。而在肝硬化时,主要病变为肝细胞坏死,线粒体中AST大量溢出,血中往往AST大于ALT。细胞膜上也含有多种酶,如γ-谷氨酰基转移酶(GGT)大量存在于肝中毛细胆管上皮膜上,当胆道梗阻、胆汁潴留在肝中时,胆汁酸盐有表面活性剂作用,可将GGT从细胞膜上洗脱下来,而此时不一定伴有细胞膜病变。正因为血中不同酶变化机制有差异,这样GGT和ALT在各种肝胆疾病时的变化常不一致。⒊酶蛋白分子量的大小不少实验都证实酶的释放速度大致与酶的分子量成反比。由于临床上测定的十余种酶之间分子量差异不太大,此因素对血中酶浓度高低影响恐不如上述因素,但对酶在血中出现升高时间先后有相当大影响。例如在AMI时,血中最先升高的CK分子量为85000,而分子量为125000的LD出现升高明显推迟。(二)酶在细胞外间隙的分布和运送细胞中的酶经过三种途径进入血液:一种如血细胞和血管内皮细胞中的酶,不经过稀释就直接进入血液。第二种途径,细胞酶既和组织间隙也和血液直接相接触。如肝脾,它们释放的酶很快直接入血,另有小部分进入组织间隙。第三种途径,大多数组织或器官中,由于存在着结构致密的毛细血管,所释放的酶大部分进入组织液。除一小部分通过毛细血管壁进入血液外,主要经由淋巴系统进入血液。由于血液只占细胞外液的20%,淋巴液和血液一天交换量可达50%-100%,其结果通过此途径进入血液的酶量不仅增高程度较低,在血中出现增高时间也较迟。临床医师不能忽视淋巴系统对血清酶浓度的影响。在一组动物实验中,单纯肌肉损伤加以固定,血中酶浓度变化不大;如加上被动运动,则AST明显升高;如移去实验动物胸导管,即使有被动运动,AST也不升高。有作者认为在坏死病变时血中线粒体酶很少达到像胞质酶这样高的程度,也是因为坏死病灶无淋巴液或很少淋巴液流动,这样大量线粒体酶堆积在坏死区,只有少部分坏死边缘区酶通过淋巴进入血液。剧烈运动后血中酶升高与其说是由于细胞损伤引起,还不如说与酶在不同体液中重新分布有关。首先运动引起血压升高,血浆容量减少,血液浓缩;更重要的是运动加速了淋巴液回流入血,大量组织液中酶进入血液。因此即使细胞中酶无明

1 / 14
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功