1一元函数微分学练习题答案一、计算下列极限:1.9325235lim222xxx2.01)3(3)3(13lim22223xxx3.xxx11lim0)11(lim)11()11)(11(lim00xxxxxxxxx211011111lim0xx4.0111111lim)1)(1()1(lim112lim121221xxxxxxxxxxx5.21)23()124(lim2324lim202230xxxxxxxxxxxx6.xtxtxtxxtxtxtxttt2)2(lim))((lim)(lim002207.00010013111lim13lim4232242xxxxxxxxxx8.943)3(2)13()31()12(lim)13()31()12(lim1082108210108822xxxxxxxxxxx原式9.2)211(lim2211)211(1lim)21...41211(limnnnnnn10.212lim02tanlim3sinlim)2tan3sin(lim0000xxxxxxxxxxxxxx11.01sinlim20xxx(无穷小的性质)212.0arctan1limarctanlimxxxxxx(无穷小的性质)13.51231121lim3)3sin(lim)2)(3()3sin(lim6)3sin(lim33323xxxxxxxxxxxxx14.xxxxxxxxxxxx)11)(sin(lim)11)(11()11)(sin(lim11)sin(lim0002)011(1)11(lim)sin(lim00xxxxx15.2323lim23tanlim00xxxxxx16.mnxxx)(sin)sin(lim0(n、m为正整数)mnmnmnxxxxmnxmnx,,1,0lim)(sin)sin(lim0017.32)2(231lim2sin21)1(lim1cos1)1(lim220231203120xxxxxxxxx(等价替换)18.31301)3(lim)3(sinlim3sinlim2202030xxxxxxxxxxxx19.413)1()(33)11(lim)31(lim)11()31(lim)1()3(lim)13(limeeexxxxxxxxxxxxxxxxxxxxxx20.2121)2()21()2(])211(lim[)211(lim)211(limexxxxxxxxx21.1lim)1ln(lim00xxxxxx(等价替换)注:也可用洛必达法则22.535sec53cos3lim5tan3sinlim2xxxxxx323.)2(sincoslim41)2)(4(sincoslim)2(sinlnlim2222xxxxxxxxxxx812141sin2)2(cossinlim412xxxxx24.nmnmaxnnmmaxanmnxmxaaxax11lim)0(lim25.xxxxxxxxxxxxx2sec22tan7tan7sec7lim2tan2sec27tan7sec7lim2tanln7tanlnlim220220017cos2coslim2sec7seclim2sec2277sec7lim220220220xxxxxxxxxxx26.1coslimsincos)1ln(limcos1cos)1ln(limcossec)1ln(lim22022022020xxxxxxxxxxxxxxxx27.aaaxxxxexaxa)1(lim)1(lim28.2111lim11lim)1112(lim)1112(lim12122121xxxxxxxxxxxx二、计算下列函数的导数:1.531xy2.xxeyx13.1004)13(xy4.122xxey5.bxeyaxsin(ba,为常数)6.3cos12eeyxx7.xxy11118.xxxxy3cotsin)32(2529.)1lg()1(22xexyx10.)1ln(2xxy11.xy1tan212.322)13(xy13.4)sin(xyeyx(求y)14.4)sin(xyeyx(求y)4答案:1.2312121)53(23)53()53(21])53[(xxxxy2.xexxxxxexxeyxxx23121)1()()(122113.99434994)13(1200)13()13(100xxxxy4.1221222)22()12(xxxxexxxey5.)cossin()(sinsin)()sin(bxbbxaebxebxebxeyaxaxaxax6.xxxxxxexexeeysin)2(ln20)(cos2ln2)()()2(coscos3cos7.xxxxxxxxy121111111122)1(1)1()1()1(212)1(2xxxxxxxxxxy8.)3(cot)(sin])32[(252xxxxyxxxxxxxxxxxxx3csc3cossin2)32)(22(533csccossin2)32()32(524222429.])1[lg(])1[(22xexyx10ln)1(2)1(2)1(10ln)1(1))(1()1(222222xxexxexxexexxxxx10.])1[ln(2xxy2222222211])1(1211[11])1(1[11)1(11xxxxxxxxxxxx511.)1(1sec2ln2)1(1sec2ln2)1(tan2ln2)2(221tan21tan1tan1tanxxxxxyxxxx12.3122312322)13(4)13()13(32])13[(xxxxxy13.4)sin(xyeyx解:方程两边同时对x求导xyxyxyxyxyxyxeyxyeyxyyeyxxeyxyyxyeyyxxyeyxyx)cos()cos(])[cos(])[cos(0)()1()cos(0)()()cos(14.(与13同)三、确定下列函数的单调区间:1.7186223xxxy函数在]1,(、),3[内单调递增,在]3,1[内单调递减。2.)0(82xxxy函数在]2,0(内单调递减,在),2[内单调递增。3.xxxy6941023函数在)0,(、]21,0(、),1[内单调递减,在]1,21[内单调递增。4.)1ln(2xxy函数在),(内单调递增。四、求下列函数图形的拐点及凹或凸区间:1.53523xxxy拐点)2720,35(,在]35,(内是凸的,在),35[内是凹的。62.)1ln(2xy拐点)2ln,1(、)2ln,1(,在]1,(、),1[内是凸的,在]1,1[内是凹的。五、求下列函数的极值:1.)1ln(xxy当0x时,函数取得极小值0)0(y。2.xxy1当43x时,函数取得极大值45)43(y。