一年级上册疑难问题解答

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

1一年级上册疑难问题解答一、“数一数”单元教学目标过于单一,内容单调,能否将其与“比一比”单元合并为一个单元?1.为什么将两部分内容分开编排?“数一数”“比一比”以及“分类”三部分内容在原通用教材中均编排在“准备课”一个单元中。实验教材将它们分开编排,主要基于如下考虑:(1)在入学前,儿童对数学知识的掌握存在较大的个体差异。为了全方位的了解学生数数、认数的情况,“数一数”单元编排时在原通用教材的基础上拓宽了场景,丰富了情境中的资源,将人物数量增加到20个,给学生提供充分展示其已具备知识的机会,以便老师在今后数的认识和加减法的教学中能够做到有的放矢,因材施教。另一方面也有助于老师结合本单元的内容帮助学生熟悉自己的校园环境。从这个意义上讲,“数一数”单元的内容虽然简单,但作用是很重要的,它对后面有针对性地教学非常有帮助。(2)比较和分类是儿童学习数学知识的基础内容,也是解决数学问题时常用的方法。为了充实学生的相关知识,编排时,在“同样多、多些、少些”的基础上,增加了比长短、比高矮等具体量的比较构成“比一比”单元;在按单一标准分类的基础上,增加了按不同标准分类的内容,构成“分类”单元。综上所述,各部分内容分开编排可以为学生提供更丰富的数学知识。2.教学中面临的问题。(1)这一单元反复让学生数图中事物的个数,学生会觉得比较枯燥,如何培养学生数数的兴趣?吸引学生兴趣的方法有很多。有的老师把主题图制成课件,使人物和情境动态化,学生对这样的画面很感兴趣,也愿意数画中的事物;有的老师将学校的背景画在黑板上,边画边请学生说一说画了什么,有几个;很多老师还在主题图的基础上让学生们数一数身边的事物,例如教室、校园里的事物,将数数活动和学生的学习、生活紧密结合起来。学生对这样的活动会很感兴趣。(2)如何把握教学要求?本单元是准备课,虽然出现了1~10各数,但并不是正式教学,不要求学生掌握10以内的数数,也不要求学生认识1~10各数。只是让老师全面、充分地了解学生数数和认数的情况,不仅要了解学生是否会口头数数、会认数,还要了解每一个学生是否能按要求正确地数出物体的个数来。二、在本册教材中出现了“从左数……”,“从右数……”的要求,但是学生尚未正式学习左、右的概念,这样的要求对学生是否会太难?2左右的正式教学安排在一年级下册进行。但是在一年级上册的某些习题中出现了“从左数……”“把右数的……”等要求,很多老师担心学生不能正确理解。其实,这里说的左右不涉及左右的相对性,仅仅是指学生以自我为中心确定左右。学生根据自己的身体线索──左手、右手,左眼、右眼以及写字、读书的顺序等日常生活经验完全可以进行判断。如果个别学生判断困难,老师可以进行适当的提示,例如,“给从左数第4只小鸟涂上颜色,也就是从你的左手边数第……”以帮助学生明确题目中左、右的含义。三、在分类教学中,有的学生分类的结果与答案不符,老师应如何评价?学生已有的知识经验不同,对问题的认识和理解也存在差异。例如,题目的要求是“找出上图中不同的是什么?”个别学生的答案是护士,因为只有护士戴帽子。对学生的这类看似有一定道理的答案该如何评价呢?我们认为,当学生出现这种答案时,老师首先要肯定他积极回答问题,但是老师不要鼓励学生这样的思考方式,而是引导学生抓住事物间的本质特征进行分类,否则学生会认为这种“标新立异”的分类结果是值得提倡的,从而导致头绪众多,结果繁杂,失去了分类教学的意义,也达不到教学目标。四、在看图列式时,已知总体求部分,学生列加法算式是否可以?由于图中两部分的数目都可以数出来,所以学生这样列式是有一定道理的,老师不应该断然否定。但这不等于可以放任学生的想法,老师还是要正确引导学生理解题意,明确图中的条件和问题,否则一旦形成了这种解决问题的模式,学生今后解决类似问题时会遇到一定的困难。例如,当数目增大,不能通过数数知道两部分的确切数目,学生的这种解题思路就会受挫。如果在教学中遇到这类情况,建议老师不要急于对学生的答案作对错的评价,可以先请学生依次说一说这张图提供了什么信息,问题是什么,然后逐步帮助学生理清图中的条件和问题,明确这类问题应用什么方法解决,从而达到学生正确列式计算的目的。五、在数的认识和加减法单元教学数的分解、组成是否有必要?数的分解、组成作为数概念的一部分,是一种非常直观的表达方式,在数的认识和加减运算中起着很重要的作用。首先,它可以加深学生对数概念的理解,巩固对数的大小和数序的认识;其次,数的分解组成对学生建立一图四式的表象、理解加减运算的关系是很有帮助的;再次,数的分解、组成也是进行加减计算的基础,尤其是10的分解和组成,在计算进位加法与退位减法时要经常用到。基于以上考虑,仍然应将“数的分解、组成”作为重要的内容进行教学。六、“认识物体和图形”单元教学中的两个争论。1.能否先教学平面图形,再过渡到立体图形。3我们提倡老师根据学生的具体情况灵活使用教材。如果在教学中,老师认为先教学平面图形的效果更好,是可以进行调整的。教材先编排立体图形,之后再是平面图形,主要是基于以下考虑:(1)在现实生活中学生直接接触的基本是立体图形,而对平面图形的感知比较少,将立体图形的认识编排在平面图形之前,可以借助学生日常已有的图形经验以及对物体的操作活动帮助学生感知几何形体的特征,建立清晰的表象。(2)教材通过立体图形和平面图形的关系引入对平面图形的认识,在向学生渗透面构成体的关系的同时,也帮助学生感受知识转化和形成的过程。2.用球是否可以画出圆?在完成练习五第5题时,老师们在“用球是否能画出圆”这一问题上存在争论。从理论上讲,如果通过一些工具把球固定住,让铅笔始终垂直纸面,沿着球画大圆,就能够画出圆来。虽然在理论上可行,但在实际操作中存在着很大的难度。不过在实际教学中确实有过学生解决了这一难题。学生用硬纸板把球紧紧地包裹起来,形成一个圆柱竖在桌子上,然后沿着这个圆柱的底的边缘画出圆。这种方法成功地运用了“转化”的思想,巧妙地将“用球画圆”转化为“用圆柱画圆”,对变换思路、解决问题颇具启发。4二年级上册疑难问题问答一、关于加减法估算的问题1.估算的意义是什么?笔算、口算、心算和估算是小学生计算的几种主要方式,从计算结果的角度来看,笔算、口算、心算可归入精确计算,而估算则可看作是一种近似计算方法。估算是对事物的数量或计算的结果做出粗略的推断或预测的过程,也是学生计算能力的重要组成部分。在以往的小学数学教学中,比较注重学生笔算、口算能力的培养,对估算的要求较低。但在日常生活中,人们往往又离不开估算,比如:从家到学校估计有2千米,步行上学估计要用15分钟;带了10元钱去买菜,估计只能买一斤猪肉和2斤西红柿,18+23经估算知结果应是40左右……所以《数学课程标准》明确提出“应重视口算,加强估算”“在解决具体问题的过程中,能选择合适的估算方法,养成估算的习惯”“能结合具体情况进行估算,并能解释估算的过程”。此外,估算与精确计算也并不是完全对立的,二者也是互有联系。如笔算除法中的试商、粗略估计计算器得到的结果是否正确等都要用到估算;同样,估算时也常常离不开基本口算,并且为了提高估算的精度,调整估算的策略,往往也需要以精确计算的结果作为支撑。可见,从加减法运算开始逐步培养孩子的估算意识是非常必要的。2.加减法估算的方法与策略有哪些?与笔算和口算相比,估算的方法更加多样化,可采用的策略也是极为丰富的。就加减法估算而言,主要就有:四舍五入法:48+3450+30=80;取‘整’*法:72-2670-20=50;(*即整十、整百等)前后协调法:54+2450+30=80……例如:教科书第31页的例4,要计算100元钱买3种商品够不够,除已经呈现的2种算法外,还可以先估计买茶杯和水壶大约要50元,剩下50元买茶壶够了等等。学生采用的估算方法不同,得到的结果也会不一致,即使估算的结果相同,所采取的估算策略也可能是不同的。学生的估算方法,只要合理可行,体现了估算的思想,都应给予鼓励。不要对学生的估算方法进行过多的评判,尤其不能以是否接近精确结果为依据来判断估算方法的优劣。另外,教学中还应让学生意识到是否采用估算,以及估算方法与策略的选用也是跟具体的问题密切相关。如一套水杯24元,一个热水壶28元,问带50元钱够吗?则就不应把24估得太低。二、有关长度单位的问题。1.如何体现统一长度单位的意义?学生在一年级上册通过“比长短”的学习,已对长度概念有了一些直观认识,并会用“长、短、一样长、短一些、长得多”等词语来形象描述物体的长度特征。但要精确描述一个物体究竟有多长,则只有采用量化的结果才能完成。而量化的基础便是长度单位的确定,这即是第一单元教学内容的现实来源。5在如何确定长度单位的问题上,教材引导学生自己选择感兴趣的物体作为长度单位来进行测量,进而得出“为什么同一边量出的结果不一样呢?”和“不同边两个人量出的数据都相等”这样的疑问(见下图),为探讨“统一长度单位”作了孕伏。教材仅是提供一个探究的线索,教学中还可结合古今中外有关量与计量制度演变的资料,让学生在更广阔的视角下来审视统一长度单位的必要性。如可介绍中国古代秦始皇采取的“车同轨,书同文,统一度量衡”等举措在促进国家统一方面的巨大意义,当今大多数国家采用的国际单位制**在科技、文化、商贸交流等方面所具备的重要作用等等。实际教学时可把这些资料做成课件等形式向学生展示,如有位老师为强调统一长度单位的意义,就做了一个动画,讲两个国家的商人在做生意时,因使用的长度单位不一致发生了争执,生意做不成了,等等。2.教学长度单位时应注意哪些问题?(1)加强探究活动,经历统一长度单位的过程。在提出“统一长度单位”这一命题前,应放手让学生采用各种物品作为单位来测量长度,让学生在活动过程中发现问题,引起认知冲突,从而感受到统一长度单位的必要性,同时又为后面教学活动的开展作好了铺垫。(2)通过多种方式,帮助学生形成厘米和米的正确表象。厘米和米是最常用的两个长度单位,也是学生进一步学习其他长度单位的基础,故对厘米和米的正确表象的建立尤为重要。为此,教材编排了不少生活中的实物,如图钉、指甲、米尺等,籍此可给学生以直观的表象。**1960年以来,国际计量会议以米、千克、秒制为基础,制定了国际单位制。现行的国际单位制,包括长度米(m)、质量千克(kg)、时间秒(s)、电流安培(A)、热力学温度开尔文(K)、物质的量摩尔(mol)、发光强度坎德拉(cd)七个国际制基本单位和平面角弧度(rad)、立体角球面角(sr)二个辅助单位;以及面积平方米(m2)、体积立方米(m3)、速度米每秒(m/s)等三十个导出单位。在国际单位制中,对米的定义是:1米等于氪-86原子的2P10和5d5能级之间跃迁所对应的辐射在真空中的1,650,763.73个波的长度三、认识线段和角的教学尺度应如何把握?为遵循儿童的认知规律和认知心理,实验教材对线段和角的定义采用的是直观描述(见下图)。这与以往利用“线段是直线上两点间的一段”来定义不同,由于这一定义本身就涉及到两个抽象的数学名词“点”和“直线”,学生理解起来较为困难。因此,关于线段比较严格的定义安排在学生认识了射线、直线之后给出(本套教材编排在四年级上册)。6教学线段时,注意不要拔高要求,只要学生直观认识什么是线段,其主要特征是“直”和“长度可测”就行了,不要把线段与直线、射线的联系与区别在这里教学。和线段的认识相似,教材关于角的初步认识的编排,也是从对实物的观察的角度来直观地、形象地描述什么是角、什么是直角,让学生在观察、操作中逐步建立起角的初步表象:有一个顶点、两条边等。对角的更严格定义,将在四年级上册学习了“射线”后给出:从一点引出两条射线所组成的图形叫做角。故教学时不要拔高要求,只要学生通过各种实际活动(如折一折、画一画、做一做等)对角和直角有感性认识即可。四、乘法计算中还要强调“几个几”吗?两个因数的地位有何区别吗?在实验教材里,乘法算式中两个相乘的数都称为“因数”,不作“被乘数”和“乘数”的区分,这样编排主要是为了更好地体现乘法在数学上的含义。在数学研究中

1 / 20
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功