一次函数之方案选择

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

《一次函数与方案设计问题》试题精选及解析一、生产方案的设计例1某医药器械厂接受了生产一批高质量医用口罩的任务.要求在8天之内(含8天)生产A型和B型两种型号的口罩共5万只,其中A型口罩不得少于1.8万只,该厂的生产能力是:若生产A型口罩每天能生产0.6万只,若生产B型口罩每天能生产0.8万只,已知生产一只A型口罩可获利0.5元,生产一只B型口罩可获利0.3元.设该厂在这次任务中生产了A型口罩x万只.问:(1)该厂生产A型口罩可获利润_____万元,生产B型口罩可获利润_____万元;(2)设该厂这次生产口罩的总利润是y万元,试写出y关于x的函数关系式,并求出自变量x的取值范围;(3)如果你是该厂厂长:①在完成任务的前提下,你如何安排生产A型和B型口罩的只数,使获得的总利润最大?最大利润是多少?②若要在最短时间内完成任务,你又如何来安排生产A型和B型口罩的只数?最短时间是多少?分析:(1)0.5x,0.3(5-x);(2)y=0.5x+0.3(5-x)=0.2x+1.5,首先,1.8≤x≤5,但由于生产能力的限制,不可能在8天之内全部生产A型口罩,假设最多用t天生产A型,则(8-t)天生产B型,依题意,得0.6t+0.8(8-t)=5,解得t=7,故x最大值只能是0.6×7=4.2,所以x的取值范围是1.8(万只)≤x≤4.2(万只);(3)○1略○2若要在最短时间完成任务,全部生产B型所用时间最短,但要求生产A型1.8万只,因此,除了生产A型1.8万只外,其余的3.2万只应全部改为生产B型.所需最短时间为1.8÷0.6+3.2÷0.8=7(天).二、营销方案的设计例2一报刊销售亭从报社订购某晚报的价格是每份0.7元,销售价是每份1元,卖不掉的报纸还可以0.20元的价格退回报社.在一个月内(以30天计算),有20天每天可卖出100份,其余10天每天只能卖出60份,但每天报亭从报社订购的份数必须相同.若以报亭每天从报社订购的份数为自变量x,每月所获得的利润为函数y.(1)写出y与x之间的函数关系式,并指出自变量x的取值范围;(2)报亭应该每天从报社订购多少份报纸,才能使每月获得的利润最大?最大利润是多少?分析:(1)由已知,得x应满足60≤x≤100,因此,报亭每月向报社订购报纸30x份,销售(20x+60×10)份,可得利润0.3(20x+60×10)=6x+180(元);退回报社10(x-60)份,亏本0.5×10(x-60)=5x-300(元),故所获利润为y=(6x+180)-(5x-300)=x+480,即y=x+480.自变量x的取值范围是60≤x≤100,且x为整数.(2)略三、调运方案的设计例4A城有化肥200吨,B城有化肥300吨,现要把化肥运往C,D两农村,如果从A城运往C,D两地运费分别是20元/吨与25元/吨,从B城运往C,D两地运费分别是15元/吨与22元/吨,现已知C地需要220吨,D地需要280吨,如果个体户承包了这项运输任务,请你帮他算一算,怎样调运花钱最小?解:设从A城运往x吨到C地,所需总运费为y元,则A城余下的(200-x)吨应运往D地,其次,C地尚欠的(220-x)吨应从B城运往,即从B城运往C地(220-x)吨,B城余下的300-(220-x)=15(220-x)+22(80+x),即y=2x+10060,略.四.优惠方案的设计例3某果品公司急需将一批不易存放的水果从A市运到B市销售.现有三家运输公司可供选择,这三家运输公司提供的信息如下:运输单位运输速度(千米/时)运输费用(元/千米)包装与装卸时间(小时)包装与装卸费用(元)甲公司60641500乙公司50821000丙公司100103700解答下列问题:(1)若乙、丙两家公司的包装与装卸及运输的费用总和恰好是甲公司的2倍,求A,B两市的距离(精确到个位);(2)如果A,B两市的距离为s千米,且这批水果在包装与装卸以及运输过程中的损耗为300元/小时,那么要使果品公司支付的总费用(包装与装卸费用、运输费用及损耗三项之和)最小,应选择哪家运输公司?分析:(1)设A,B两市的距离为x千米,则三家运输公司包装与装卸及运输的费用分别是:甲公司为(6x+1500)元,乙公司为(8x+1000)元,丙公司为(10x+700)元,依题意,得(8x+1000)+(10x+700)=2×(6x+1500),解得x=21632≈217(千米);(2)设选择甲、乙、丙三家公司的总费用分别为1y,2y,3y(单位:元),则三家运输公司包装及运输所需的时间分别为:甲(60s+4)小时;乙(50s+2)小时;丙(100s+3)小时.从而1y=6s+1500+(60s+4)×300=11s+2700,2y=8s+1000+(50s+2)×300=14s+1600,3y=10s+700+(100s+3)×300=13s+1600,现在要选择费用最少的公司,关键是比较1y,2y,3y的大小.∵s>0,∴2y>3y总是成立的,也就是说在乙、丙两家公司中只能选择丙公司;在甲和丙两家中,究竟应选哪一家,关键在于比较1y和3y的大小,而1y与3y的大小与A,B两市的距离s的大小有关,要一一进行比较.当1y>3y时,11s+2700>13s+1600,解得s<550,此时表明:当两市距离小于550千米时,选择丙公司较好;当1y=3y时,s=550,此时表明:当两市距离等于550千米时,选择甲或丙公司都一样;当1y<3y时,s>550,此时表明:当两市的距离大于550千米时,选择甲公司较好.五.巩固训练.1.某校校长暑假将带领该校市级“三好生”去北京旅游.甲旅行社说:“如果校长买全票一张,则其余学生可享受半价优待.”乙旅行社说:“包括校长在内,全部按全票价的6折(即按全票价的60%收费)优惠.”若全票价为240元.(1)设学生数为x,甲旅行社收费为y甲,乙旅行社收费为y乙,分别计算两家旅行社的收费(建立表达式);(2)当学生数是多少时,两家旅行社的收费一样;(3)就学生数x讨论哪家旅行社更优惠.2.A城有化肥200吨,B城有化肥300吨,现要把化肥运往C,D两农村,如果从A城运往C,D两地运费分别是20元/吨与25元/吨,从B城运往C,D两地运费分别是15元/吨与22元/吨,现已知C地需要220吨,D地需要280吨,如果个体户承包了这项运输任务,请你帮他算一算,怎样调运花钱最小?3.某工厂现有甲种原料360千克,乙种原料290千克,计划利用这两种原料生产A,B两种产品,共50件.已知生产一件A种产品需用甲种原料9千克、乙种原料3千克,可获利润700元;生产一件B种产品,需用甲种原料4千克、乙种原料10千克,可获利润1200元.(1)要求安排A,B两种产品的生产件数,有哪几种方案?请你设计出来;(2)生产A,B两种产品获总利润是y(元),其中一种的生产件数是x,试写出y与x之间的函数关系式,并利用函数的性质说明(1)中的哪种生产方案获总利润最大?最大利润是多少?

1 / 2
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功