2007-2017年全国卷极坐标与参数方程

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

1极坐标与参数方程(全国卷高考题)(2007)坐标系与参数方程:1O和2O的极坐标方程分别为4cos4sin,.(Ⅰ)把1O和2O的极坐标方程化为直角坐标方程;(Ⅱ)求经过1O,2O交点的直线的直角坐标方程.(2008)坐标系与参数方程:已知曲线C1:cos()sinxy为参数,曲线C2:222()22xttyt为参数。(1)指出C1,C2各是什么曲线,并说明C1与C2公共点的个数;(2)若把C1,C2上各点的纵坐标都压缩为原来的一半,分别得到曲线1'C,2'C。写出1'C,2'C的参数方程。1'C与2'C公共点的个数和C1与C2公共点的个数是否相同?说明你的理由。2(2009)已知曲线C1:4cos,3sin,xtyt(t为参数),C2:8cos,3sin,xy(为参数).(Ⅰ)化C1,C2的方程为普通方程,并说明它们分别表示什么曲线;(Ⅱ)若C1上的点P对应的参数为2t,Q为C2上的动点,求PQ中点M到直线332,:2xtCyt(t为参数)距离的最小值.(2010)坐标系与参数方程:已知直线C1:x=1+tcosα,y=tsinα,(t为参数),圆C2:x=cosθy=sinθ,(θ为参数).(1)当α=π3时,求C1与C2的交点坐标;(2)过坐标原点O作C1的垂线,垂足为A,P为OA的中点.当α变化时,求P点轨迹的参数方程,并指出它是什么曲线.3(2011)坐标系与参数方程:在直角坐标系xOy中,曲线C1的参数方程为2cos22sinxy(为参数),M是C1上的动点,P点满足2OPOM,P点的轨迹为曲线C2(Ⅰ)求C2的方程(Ⅱ)在以O为极点,x轴的正半轴为极轴的极坐标系中,射线3与C1的异于极点的交点为A,与C2的异于极点的交点为B,求AB.(2012)已知曲线C1的参数方程是x=2cosφy=3sinφ(φ为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程是ρ=2.正方形ABCD的顶点都在C2上,且A、B、C、D以逆时针次序排列,点A的极坐标为(2,π3)(Ⅰ)求点A、B、C、D的直角坐标;(Ⅱ)设P为C1上任意一点,求|PA|2+|PB|2+|PC|2+|PD|2的取值范围。4(2013课标1)已知曲线1C的参数方程为45cos,55sinxtyt(t为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线2C的极坐标方程为2sin。(Ⅰ)把1C的参数方程化为极坐标方程;(Ⅱ)求1C与2C交点的极坐标(0,02)。(2013课标2)已知动点PQ、都在曲线2cos,:2sinxtCyt(t为参数)上,对应参数分别为=t与=2t(02),M为PQ的中点。(Ⅰ)求M的轨迹的参数方程;(Ⅱ)将M到坐标原点的距离d表示为的函数,并判断M的轨迹是否过坐标原点。5(2014课标1)已知曲线194:22yxC,直线tytxl222:(t为参数)(1)写出曲线C的参数方程,直线l的普通方程;(2)过曲线C上任意一点P作与l夹角为30°的直线,交l于点A,求PA的最大值与最小值.(2014课标2)在直角坐标系xOy中,以坐标原点为极点,x轴正半轴为极轴建立极坐标系,半圆C的极坐标方程为2cos,[0,]2.(1)求C得参数方程;(2)设点D在C上,C在D处的切线与直线:32lyx垂直,根据(1)中你得到的参数方程,确定D的坐标.6(2015课标1)在直角坐标系xOy中,直线1:2Cx,圆222:121Cxy,以坐标原点为极点,x轴正半轴为极轴建立极坐标系.(I)求12,CC的极坐标方程.(II)若直线3C的极坐标方程为πR4,设23,CC的交点为,MN,求2CMN的面积.(2015课标2)在直线坐标系xOy中,曲线C1:cossinxtytαα{(t为参数,t0)其中0α.在以O为极点,x轴正半轴为极轴的极坐标系中,曲线C2:p=2sin,C3:p=23cos。(I)求C2与C3交点的直角坐标;(II)若C1与C2相交于点A,C1与C3相交于点B,求|AB|的最大值.7(2016课标1)(本小题满分10分)选修4—4:坐标系与参数方程在直线坐标系xoy中,曲线C1的参数方程为cos,1sinxatyat(t为参数,a>0)。在以坐标原点为极点,x轴正半轴为极轴的极坐标系中,曲线C2:ρ=4cosθ.(Ⅰ)说明C1是哪种曲线,并将C1的方程化为极坐标方程;(Ⅱ)直线C3的极坐标方程为0a,其中0a满足0tan2a,若曲线C1与C2的公共点都在C3上,求a.(2016课标2)((本小题满分10分)选修4—4:坐标系与参数方程在直角坐标系xOy中,圆C的方程为22(6)25xy.(Ⅰ)以坐标原点为极点,x轴正半轴为极轴建立极坐标系,求C的极坐标方程;(Ⅱ)直线l的参数方程是cossinxtyt(t为参数),l与C交于,AB两点,||10AB,求l的斜率.8(2016课标3)(本小题满分10分)选修4—4:坐标系与参数方程在直线坐标系xoy中,曲线C1的参数方程为(为参数)。以坐标原点为极点,x轴正半轴为极轴,建立极坐标系,曲线C2的极坐标方程为ρsin()=.(I)写出C1的普通方程和C2的直角坐标方程;(II)设点P在C1上,点Q在C2上,求∣PQ∣的最小值及此时P的直角坐标.(2017课标1)[选修4―4:坐标系与参数方程](10分)在直角坐标系xOy中,曲线C的参数方程为3cos,sin,xy(θ为参数),直线l的参数方程为4,1,xattyt(为参数).(1)若a=−1,求C与l的交点坐标;(2)若C上的点到l的距离的最大值为17,求a.9(2017课标2)[选修4-4:坐标系与参数方程](10分)在直角坐标系xOy中,以坐标原点为极点,x轴正半轴为极轴建立极坐标系。曲线C1的极坐标方程为cos4(1)M为曲线C1的动点,点P在线段OM上,且满足16OMOP=,求点P的轨迹C2的直角坐标方程;(2)设点A的极坐标为π23(,),点B在曲线C2上,求OAB面积的最大值。(2017课标3).[选修4―4:坐标系与参数方程](10分)在直角坐标系xOy中,直线l1的参数方程为2+,,xtykt(t为参数),直线l2的参数方程为2,,xmmmyk(为参数).设l1与l2的交点为P,当k变化时,P的轨迹为曲线C.(1)写出C的普通方程;(2)以坐标原点为极点,x轴正半轴为极轴建立极坐标系,设l3:ρ(cosθ+sinθ)−2=0,M为l3与C的交点,求M的极径.

1 / 9
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功