ZigBee智能交通系统

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

河北科技大学课程设计报告学生姓名:王仕垚学号:130707116专业班级:物联网工程131班课程名称:智能交通系统学年学期:2015—2016学年第2学期同组人员:无指导教师:王会勇2016年6月课程设计成绩评定表学生姓名学号成绩专业班级起止时间设计题目指导教师评语课程设计态度:端正□较端正□一般□较差□课程设计纪律:好□较好□一般□较差□课程设计出勤情况:好□较好□一般□较差□课程设计任务完成情况:优秀□好□一般□较差□课程设计报告完成情况:优秀□好□一般□较差□动手能力:强□较强□一般□较差□团队精神:好□较好□一般□较差□创新意识:强□较强□一般□较差□指导教师:年月日目录摘要...........................................................................4一、课题背景...........................................................4二、课题研究主要内容............................................5三、发展前景与拓展................................................81、发展前景.........................................................82、可拓展性.........................................................9四、课题的详细设计..............................................10无线传感网促进智能交通的发展.....................10用于ITS的无线传感器网络构建......................11采用无线传感器网络进行交通信息采集.........11无线传感器网络在ITS中的应用......................12网络节点和网关节点的设计.............................13五、心得和体会......................................................18六、参考文献.........................................................18摘要无线传感器网(WSN)综合了嵌入式系统、无线通讯、微电子等技术,逐渐应用于智能楼宇与智能家居、医疗监护、工业监控等领域。本文介绍了无线传感器网络常用芯片和典型解决方案,及其在智能交通系统(ITS)中的典型应用。关键词:无线传感器网络;智能交通系统;交通信息采集;智能公交系统一、课题背景随着经济的快速发展,生活方式变得更加快捷,城市的道路也逐渐变得纵横交错,快捷方便的交通在人们生活中占有及其重要的位置,而交通安全问题则是重中之重。据世界卫生组织统计,全世界每年死于道路交通事故的人数约有120万,另有数100万人受伤。中国拥有全世界1.9%的汽车,引发的交通事故占了全球的15%,已经成为交通事故最多发的国家。2000年后全国每年的交通事故死亡人数约在10万人,受伤人数约50万,其中60%以上是行人、乘客和骑自行车者。中国每年由于汽车安全方面所受到的损失约为5180亿(人民币),死亡率为9人/万·车,因此,有效地解决交通安全问题成为摆在人们面前一个棘手的问题。在中国,城市的道路纵横交错,形成很多交叉口,相交道路的各种车辆和行人都要在交叉口处汇集通过。而目前的交通情况是人车混行现象严重,非机动车的数量较大,路口混乱。由于车辆和过街行人之间、车辆和车辆之间、特别是非机动车和机动车之间的干扰,不仅会阻滞交通,而且还容易发生交通事故。根据调查数据统计,我国发生在交叉口的交通事故约占道路交通事故的1/3,在所有交通事故类型中居首位,对交叉口交通安全影响最大的是冲突点问题,其在很大程度上是由于信号灯配时不合理(如黄灯时间太短,驾驶员来不及反应),以及驾驶员不遵循交通信号灯,抢绿灯末或红灯头所引发交通流运行的不够稳定。随着我国经济的快速发展,私家车也越来越多,交通控制还是延续原有的定时控制,在车辆增加的基础上,这种控制弊端也越来越多的体现出来,造成了十字交叉路口的交通拥堵和秩序混乱,严重的影响了人们的出行。智能交通中的信号灯控制显示出了越来越多的重要性。国外已经率先开展了智能交通方面的研究。美国VII系统(vehicleinfrastructureintegration),利用车辆与车辆、车辆与路边装置的信息交流实现某些功能,从而提高交通的安全和效率。其功能主要有提供天气信息、路面状况、交叉口防碰撞、电子收费等。目前发展的重点主要集中在2个应用上:①以车辆为基础;②以路边装置为基础。欧洲主要是CVIS系统(cooperativevehicleinfrastructuresystem)。它有60多个合作者,由布鲁塞尔的ERTICO组织统筹,从2006年2月开始到2010年6月,工作期为4年。其目标是开发出集硬件和软件于一体的综合交流平台,这个平台能运用到车辆和路边装置提高交通管理效率,其中车辆不仅仅局限于私人小汽车,还包括公共交通和商业运输。日本主要的系统是UTMS21(universaltrafficmanagementsystemforthe21stcentury,UTMS21)。是以ITS为基础的综合系统概念,由NPA(NationalPoliceAgency)等5个相关部门和机构共同开发的,是继20世纪90年代初UTMS系统以来的第2代交通管理系统,DSSS是UTMS21中保障安全的核心项目,用于提高车辆与过街行人的安全。因此,从国外的交通控制的发展趋势可以看出,现代的交通控制向着智能化的方向发展,大多采用计算机技术、自动化控制技术和无线传感器网络系统,使车辆行驶和道路导航实现智能化,从而缓解道路交通拥堵,减少交通事故,改善道路交通环境,节约交通能源,减轻驾驶疲劳等功能,最终实现安全、舒适、快速、经济的交通环境。二、课题研究主要内容智能交通系统(IntelligentTransportationSystem,简称ITS)是利用尖端的电子信息技术,形成行人、公路和车辆三位一体的新公路交通系统的总称。我国现有的交通控制系统,相对于国外的发展具有较大的差距,这种落后的控制方式已经无法满足当前的交通运输的压力。目前,我国的智能交通系统对车辆的检测大多采用环形线圈探测器、微波探测器、超声波和视频探测器等。从性价比角度考虑,环形线圈探测器其技术成熟,检测精度高,可全天候的工作,但是安装时候需要切割地面,影响路面的寿命,目前主要应用在停车场内。超声波和微波容易受到天气和障碍物的影响,造成误检。视频探测是目前应用较多的检测方式,适用于城市交叉路口的交通控制,但易受恶劣气候的影响,夜间要求有路灯照明。上述的交通控制系统普遍价格比较昂贵,需要有线的方式进行检测,只能够提供单一的十字路口的交通控制。虽然汽车由于型号不同而具有不同的结构,但各类汽车中均含有大量的铁磁物质,尤其是汽车底盘均用铁磁材料制造而成。汽车在行驶过程中会对周围的地磁场产生影响,有些汽车甚至可以影响到十几米以外的地球磁场。将磁敏传感器置于道路两侧或路基之下的适当位置处便可感应到地磁场的变化,通过磁敏器件的输出信号可以判断出车辆通过的情况,从而实现对车流量进行监测。因此本系统根据上述系统的弊端,提出了一种新的控制方式,采用无线传感器网络结合巨磁阻传感器来完成交通的智能控制,相临十字交叉路口处的无线传感器汇聚节点之间能够进行通信,提供了相对较多的数据冗余信息。无线传感器网络作为新兴的测控网络技术,是能够自主实现数据的采集、融合和传输等应用的智能网络应用系统。无线传感器网络使逻辑上的信息世界与真实的物理世界紧密结合,从而真正实现“无处不在”的计算模式,而且该系统具有体积小、成本低、便于安装的优点,能够全天候的工作,便于在交通部门进行推广和普及。本系统选用灵敏度较高的巨磁阻传感器来完成对行驶车辆的检测。系统的频率选择在2.4Ghz工作频段,该频段相对于433Mhz、868Mhz、915Mhz具有较宽的工作频带和较快的信号传输速率。整套系统支持ZigBee协议,具有数据较验和冲突检测的功能。该系统主要由无线传感器节点和无线传感器汇聚节点组成。无线传感器节点是整套系统的基本组成部分,节点是整个系统的基本组成单元,节点电路的基本组成框图如图1所示:微处理器模块收发芯片射频天线A/D转换模块系统供电和电源管理模块调试与测试接口巨磁阻传感器1巨磁阻传感器2扩展接口图1无线传感器节点的基本组成框图整个系统由微处理器、传感器单元、收发单元及供电单元组成。微处理器使用LPC2138,它是基于一个支持实时仿真和嵌入式跟踪的32/16位ARM7TDMI-SCPU的微控制器,并内嵌32/64/128/256/512kB的高速Flash存储器。128位宽度的存储器接口和独特的加速结构使32位代码能够在最大时钟速率下运行,对代码规模有严格控制的应用它具有高性能和低功耗的特性,指令集和相关的译码机制比复杂指令集计算机要简单的多。传感器为磁阻传感器,由两个相距5-10cm的磁阻传感器,当有车辆通过时,传感器周围的地磁场发生变化,变化的磁场信号经过信号放大后经过A/D转换器后送入微处理器,处理器便立即启用定时器记录下车辆通过的时刻,然后开始采集后端传感器的输出信号,当检测到车辆后计时器停止计时。重新开始车辆的计数工作,检测下一辆车,系统采用两个传感器能够判断车辆行驶的方向。检测后的信息经处理后发送至收发单元,收发单元将检信号发送给无线传感器汇聚节点。整套系统的设计原理框图如图2所示:交通信号灯无线传感器节点无线传感器汇聚节点北方向南方向西方向东方向交通信号灯控制以无线、GSM或者有线智能交通指挥中心图2无线传感器网络智能交通控制原理框图安装在道路边的无线传感器节点实时的检测检测车道上行经的车辆,并能够由远离信号灯的无线传感器节点实时的检测停留在车道上的排对车辆长度,传感器节点将监测到的信息实时的发送给无线传感器汇聚节点。汇聚节点根据道路两边布置的传感器发送来的信息。以路面的实际车辆长度为输入量,输出量为实际控制延长的绿灯时间,最终实现平面交叉口信号灯的控制。收发单元则使用射频模块,在电子学理论中,电流流过导体,导体周围会形成磁场;交变电流通过导体,导体周围会形成交变的电磁场,称为电磁波。在电磁波频率低于100khz时,电磁波会被地表吸收,不能形成有效的传输,但电磁波频率高于100khz时,电磁波可以在空气中传播。射频则指具有远距离传输能力的高频电磁波,射频模块则是基于射频技术的可进行远距离传输的硬件设备。三、发展前景与拓展1、发展前景据我中新专家研究,采用智能交通技术提高道路管理水平后,每年仅交通事故死亡人数就可减少30%以上,并能提高交通工具的使用效率50%以上。为此,世界各发达国家竞相投入大量资金和人力,进行大规模的智能交通技术研究试验。目前,很多发达国家已从对该系统的研究与测试转入全面部署阶段。智能交通系统将是21世纪交通发展的主流,这一系统可使现有公路使用率提高15%到30%。除了欧、美、日以外,新兴的工业国家和发展中国家也开始了智能交通系统的全面开发和研究。韩国由交通部牵头制定了全面的智能交通系统框架结构和发展计划;新加坡的城市道路电子动态收费系统应用最为成功,已成为居民生活不可分割的部分,目前,新加坡已经在全国开始推行不停车电子收费;中东的一些国家也开始讨论本国智能交通系统的研究计划;在香港,城市道路电子动态收费也已成功地试运行多年。国务院出台的“四万亿计划”的效应将呈几何级数放大。北京、上海、江苏、浙江、广东、河南、云南、山东等地近日不约而同推出了一系列举措。地方投资主攻交通基础设施建设。中国智能交通系统需求和发展前景广阔。以不停车收费系统(

1 / 18
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功