《向量数乘运算及其几何意义》教学设计

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

向量数乘运算及其几何意义教学设计一、教材分析1.《新课程标准》的解读分析向量具有丰富的现实背景和物理背景,是沟通几何、代数、三角等内容的桥梁,是重要的数学模型。在本模块的教学中,应鼓励学生使用计算器和计算机探索和解决问题。在相应的内容中可以插入数学探究或数学建模活动。2.在整个高中教材中的地位和作用。向量,具有“数”与“行”的双重身份,是处理问题的一种工具,作用非常大,贯穿于整个高中数学的学习中。3.本章节地位、本节的逻辑关系。向量数乘运算及其几何意义位于人教版《必修4》2.2.3节,在本章节中起着承前起后的作用。学生在掌握向量加法、减法的基础上,学习实数与向量的积的运算已无多大困难。通过前面学习两个向量的运算,进一步转化为数与向量的联系,是后面学习平面向量基本定理的基础。二、教学目标设计(一)教学重难点重点:掌握实数与向量的积的定义、运算律,理解向量共线定理。难点:向量共线定理的探究及其应用。(二)三维目标设计1.知识与技能:通过实例,掌握向量数乘运算,理解其几何意义,理解向量共线定理。熟练运用定义、运算律进行有关计算,能够运用定理解决向量共线、三点共线、直线平行等问题。2.过程与方法:理解掌握向量共线定理及其证明过程,会根据向量共线定理判断两个向量是否共线。3.态度情感与价值观:通过由实例到概念,由具体到抽象,培养学生自主探究知识形成的过程的能力,合作释疑过程中合作交流的能力。激发学生学习数学的兴趣和积极性,陶冶学生的情感,培养学生实事求是的科学态度,勇于创新的精神。(三)教情学情分析本节课是为高一8班的数学教学而设计的,因为我任教的是高三,所以对本班级的一些情况缺乏了解。通过与任课教师以及所在班学生的交流得知,前面学生已经学完向量的加减运算,学生具备一定的独立思考,合作释疑的能力。因此,本节课采用“探究释疑”的授课方式,既能充分发挥学生主观能动性,又能达到预期的教学目的。(四)教学预设前制定的预习提纲一、基本知识点1.一般地,我们规定,这种运算叫做向量的数乘,记作,它的长度和方向规定如下:(1)(2)2.向量数乘的运算律:(1)(结合律)(2)(第一分配率)1(3)(第二分配率)3.向量共线定理二、三基自测1.计算5(3a-2b)+4(2b-3a)=2.设两个非零向量a与b不共线,若AB=a+b,BC=2a+8b,CD3(a-b)求证:A、B、D三点共线。(五)教学策略通过探究、启发、当堂训练的教学程序,采用启发式讲解、互动式讨论、反馈式评价的授课方式,培养学生的自学能力和分析解决问题的能力,借助多媒体辅助教学,达到增加课堂效率的目的,营造生动活泼的课堂教学氛围。三、教学内容设计课题:向量数乘运算及其几何意义课型:复习课教法:探究释疑和多媒体辅助教学的方法教具:多媒体及课件辅助教学【教学程序】【教学过程】(一)引入1.复习向量的加法、减法,(温故而知新),采用提问的形式。问题1:向量加法的运算法则?问题2:向量减法的几何意义?学生回答完毕后,教师通过多媒体上的图像让学生更直观感受。C复习向量的加减法探究数乘向量的定义探究数乘向量的运算律探究向量共线定理例题与练习2向量的加法:三角形法则(首尾相连)和平行四边形法则(共起点)。向量的减法:aOA,bOB则baBA。(共起点,连终点,方向指向被减数)。2.问题情境:一质点从点O出发做匀速直线运动,若经过1s的位移对应的向量用a表示,那么在同方向上经过3s的位移所对应的向量可用来表示。这是何种运算的结果?启发学生发现:这些公式都是实数与向量间的关系3.【探究1】已知非零向量a,作出aaa和)()(aa,你能说处他们的几何意义吗?问题1:相加后,和的长度和方向有什么变化?问题2:这些变化与哪些因素有关?将学生分成两组,第一组:aaa;第二组:)()(aa。让学生在白纸上作出图像,并讨论两个问题。最后学生之间互相交流,总结结论。生:a3与a方向相同且aa33;生:a2与a方向相反且aa22师:非常好!教师通过多媒体,看长度和方向的图像变化形式。(二)新课讲解1.实数与向量的积的定义请大家根据上述问题并作一下类比,看看怎样定义实数λ与向量a的积?启发学生从以下角度思考:a是向量?长度?方向?根据学生总结,让学生看大屏幕。2.实数与向量的积的运算律bbabbabbaPBAO-a-aaaa-aaABbaaaABCDaABO一般地,我们规定实数λ与向量a的积是一个向量,这种运算叫做向量的数乘,记作:a,它的长度和方向规定如下:(1)aa(2)当λ0时,a的方向与a的方向相同;当λ0时,a的方向与a的方向相反。由(1)可知,当0或0a时,0a3【探究2】问题一:求作向量)2(3a和a6(a为非零向量),并进行比较。问题二:已知向量a、b,求作向量)(2ba和ba22,并进行比较。(将全班划分为2个小组,组内同学展开讨论,提出方法并自主探究。教师在学生中进行巡视,了解学生的进展情况,并适时加以引导。在整个过程中,同学们都能积极思考问题,参与的热情很高。)师:鼓励学生踊跃回答生:结论:aa6)2(3,aaa42)42(生:baba22)(2类比实数乘法的运算律向量数乘的运算律:为了降低难度,教科书不要求对三个运算律作出证明,只要求学生会用。小注:实数与向量可以求积,但不能进行加减运算。例1:计算(口答)(1)a4)3((2)ababa)(2)(3(3))23()32(cbacba设计意图:要求学生熟练运用向量数乘运算的运算律。教学中,不能让学生将本题简单地看作字母的代数运算,可以让他们在代数运算的同时说出其几何意义,使学生明确向量数乘运算的特点。解:(1)原式=a12(2)原式=bba5)23()123(2a2a2aaaaaaaa2(a+b)baab2a+2bbbaa设a、b为任意向量,、为任意实数,则有:结合律:aa)()(第一分配律:aaa)(第二分配律:baba)(4(3)原式=cbacba25)11()23()32(剖析:向量的加、减、数乘运算统称为向量的线形运算。对于任意向量a、b及任意实数、,恒有baba2121)(。3、向量共线定理思考:引入向量数乘运算后,你能发现数乘向量与原向量之间的位置关系吗?生:数乘向量与原向量是共线的。【探究3】问题1:如果ab(0a),那么,向量a与b是否共线?问题2:b与非零向量a共线,那么,ab?(学生分成两组,各选一问进行研究,然后同学之间相互交流,最后提升结论。教师巡视,适时加以引导,了解学生进展情况)生:对于向量a(0a)、b,如果有一个实数,使得ab,那么,由数乘向量的定义知:向量a与b共线。生:若向量a与b共线,0a,且向量b的长度是a的长度的倍,即有ab,当a与b同方向时,有ab;当a与b反方向时,有ab,所以始终有一个实数,使ab。师:如果没有0a的限制,会有什么结果?(学生惊讶,没有限制会怎么样呢?马上进入思考状态。)生:问题1成立。0与任意向量都是共线向量。生:问题2不成立。评析:1.让学生正确理解定理包含的两层意思。也就是将来我们在选修中学到的充要条件。2.让学生自己先体验;若无此限制,会有什么结果?再感悟到只有用非零向量,才能表示与它共线的所有向量。3.通过分组讨论后,集同学们的劳动成果、智慧于一体,彼此之间再进行交流,充分体现了“众人拾柴火焰高”。例2.已知任意两非零向量a、b,试作baOA,baOB2,baOC3。你能判断A、B、C三点之间的位置关系吗?为什么?设计意图:利用向量共线判断三点共线的方法,这是判断三点共线常用的方法。教学中可以先让学生作图,通过观察图形得到A、B、C三点共线的猜想,再将平面几何中判断三点共线的方法转化为用向量共线证明三点共线,本题主要引导学生理清思路,具体过程可由学生完成。解:作图如右(过程略)依图观察,知A、B、C三点共线。证明如下:CAoBCAoACAoOCbbba向量共线定理:向量b与非零..向量a共线当且仅当有唯一.......一个实数,使得ab5∵)()3(babaOAOCACb2又)()2(babaOAOBABb∴ABAC2,又AB与AC有公共点A,∴A、B、C三点共线。评析:证明三点共线,可以直接运用定理,找出两向量间关系,再利用它们有一个公共点,得到三点共线。教学中利用多媒体作图,进行动态演示,揭示向量a、b变化过程中,A、B、C三点始终在同一条直线上的规律。【变式练习】如图,已知ABAD3、BCDE3,试判断AC与AE是否共线?解:∵ABAD3、BCDE3又DEADAE)(333BCABBCABAC3∴AC与AE共线。评析:证明向量共线,可以直接运用定理。思考:在本题中,若B、C分别是AD、AE的三等分点,你能否利用向量关系来证明BC‖DE呢?生:BCABACABACADAEDE3)(333,即BC∥DE,又因为BC、DE不重合,所以BC∥DE。(三)课堂小结通过本节学习,要求大家掌握实数与向量的积的定义,掌握实数与向量的积的运算律,理解向量共线定理,并能在解题中加以运用。1.概念与定理①a的定义及运算律。②向量共线定理:向量b与非零..向量a共线当且仅当有唯一.......一个实数,使得ab。2.知识应用:①证明向量共线;②证明三点共线:两向量共线且有一个公共点若BCAB,即AB与BC共线且有一个公共点B,则A、B、C三点共线;③证明两直线平行:CEABD6直线AB∥直线CD。CDABAB∥CDAB、CD不重合作业:102P9、12(四)当堂检测(知己知彼,才能百战不殆)1.计算8(2a-b+c)-6(a-2b+-c)-2(2a+c)=2.设a是非零向量,λ是非零实数,下列结论中正确的是(A)a与-a的方向相反(B)aa(C)a与a2的方向相同(D)aa3.设a、b是不共线的两个非零向量,若OA=2a-b,OB=3a+b,OCa-3b求证:A、B、C三点共线。(五)课后拓展提高(不畏浮云遮望眼,只缘身在最高层)(选做)在平行四边形ABCD中,点M是AB的中点,点N在线段BD上,且BN=31BD.求证M、N、C三点共线。四、教后剖析(一)学业评价自主性:注重发展学生的个性,分层式练习和选择性作业,充分体现了学生的主体地位。实践性:通过学生评析中的变式训练,给学生提供了一个很好的数学学习环境和学习机会。(二)教学设计后预设性反思向量数乘运算及其几何意义是继向量的加法、减法之后的基本运算,为了正确的认识向量数乘运算及其几何意义,首先复习了向量的加法、减法,然后通过学生比较熟悉的例子,引入主题。本节课总共设置三个探究题,目的是通过学生自主探究、合作释疑,参与知识形成的过程。我的教学的一个理念是:体现学生的主体地位,培养学生科学的探究能力。设计本节课之后,我想让学生在知识上:掌握向量数乘的定义、运算律及其几何意义,理解两个向量共线的含义并能解决:向量共线、三点共线、直线平行等问题。在能力上:培养学生自主探究知识形成的过程的能力,合作释疑过程中合作交流的能力。通过对例题的分析,使学生掌握解题的思想和方法;对变式训练的操作,使学生巩固知识点的掌握;通过当堂检测,判断学生的收获;通过课后拓展提高,开阔学生视野,拓宽知识面。希望通过本节课,能更好的培养学生的创新能力。

1 / 7
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功