《平面与平面垂直的性质》教学设计

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

《平面与平面垂直的性质》教学设计一、教材分析:直线与平面垂直问题是直线与平面的重要内容,也是高考考查的重点,求解的关键是根据线与面之间的互化关系,借助创设辅助线与面,找出符号语言与图形语言之间的关系把问题解决。通过对有关概念和定理的概括、证明和应用,使学生体会“转化”的观点,提高学生的空间想象力和逻辑推理能力。二、学情分析:1.学生思维活跃,参与意识和自主探究能力较强,故采用启发、探究式教学方法;通过一系列的问题及层层递进的的教学活动,引导学生进行主动的思考、探究。帮助学生实现从具体到抽象、从特殊到一般的过度,从而完成定义的建构和定理的发现。2.学生抽象概括能力和空间想象能力有待提高,故采用多媒体辅助教学。让学生在认知过程中,着重掌握原认知过程,使学生把独立思考与多向交流相结合。三、根据本课教材的特点,新大纲对本节课的教学要求,结合学生身心发展的合理需要,确定了以下教学目标:(1)知识与技能目标:①让学生在观察物体模型的基础上,进行操作确认,获得对性质定理的正确认识;②能运用性质定理证明一些空间位置关系的简单命题,进一步培养学生空间观念.(2)过程与方法目标:①了解直线与平面、平面与平面垂直的判定定理和性质定理间的相互联系,掌握等价转化思想在解决问题中的运用.②通过“直观感知、操作确认,推理证明”,培养学生逻辑推理能力。③发展学生的合情推理能力和空间想象力,培养学生的质疑思辨、创新的精神.(3)情感、态度与价值观目标:让学生亲身经历数学研究的过程,体验探索的乐趣,增强学习数学的兴趣.四、教学重点与难点:(1)教学重点:理解掌握面面垂直的性质定理和内容和推导。(2)教学难点:运用性质定理解决实际问题。五、教学设计思路:1、复习导入:(1)线面垂直判定定理:如果一条直线和一个平面内两条相交直线都垂直,则这条直线垂直于这个平面.(2)面面垂直判定定理:如果一个平面经过另一个平面的一条垂线,则这两个平面互相垂直.2、探究发现:(1)创设情境:已知黑板面与地面垂直,你能在黑板面内找到一条直线与地面平行、相交或垂直吗这样的直线分别有什么性质?试说明理由!设计说明:感知在相邻的两个相互垂直的平面内,有哪些特殊的直线和平面关系,然后通过操作,确定两个平面垂直的性质定理的合理性,引导学生通过模型观察,讨论在两个平面相互垂直的情况下,能够推出一些什么样的结论。(2)探索新知:已知:面α⊥面β,α∩β=a,ABα,AB⊥a于B,求证:AB⊥β(让学生思考怎样证明)分析:要证明直线垂直于平面,须证明直线垂直于平面内两条相交直线,而题中条件已有一条,故可过该直线作辅助线.证明:在平面β内过B作BE⊥a,又∵AB⊥a,∴∠ABE为α﹣a﹣β的二面角,又∵α⊥β,∴∠ABE=90°,∴AB⊥BE又∵AB⊥a,BE∩a=B,∴AB⊥β(3)面面垂直的性质定理:两平面垂直,则一个平面内垂直于交线的直线与另一个平面垂直.(用符号语言表述)若α⊥β,α∩β=a,ABα,AB⊥a于B,则AB⊥β注:从面面垂直的性质定理可知,要证明线垂直于面可通过面面垂直来证明,而前面我们知道,面面垂直也可通过线面垂直来证明。这种互相转换的证明方法是常用的数学思想方法。同学们在学习中要认真理解和体会。3、学用结合:(1)例1.求证:如果两个平面互相垂直,那么经过第一个平面内的一点垂直于第二个平面的直线,在第一个平面内.(教材第76页“思考”)(2)例2.如图,已知平面α、β,α⊥β,α∩β=AB,直线a⊥β,aα,试判断直线a与平面α的位置关系(求证:a∥α)(教材第76页例题5)(分析:因为直线与平面有在平面内、相交、平行三种关系)解:在α内作垂直于α、β交线AB的直线b,∵α⊥β∴b⊥β∵a⊥β∴a∥b,又∵aα∴a∥α六、课堂练习:教材第77页“练习”。七、归纳总结:(1)面面垂直判定定理:如果一个平面经过另一个平面的一条垂线,则这两个平面互相垂直.(2)面面垂直的性质定理:两平面垂直,则一个平面内垂直于交线的直线与另一个平面垂直.八、布置作业:教材第77页习题2、3。九、板书设计:2.3.4平面与平面垂直的性质1、面面垂直判定定理:、3、例15、作业4、例22、面面垂直性质定理:教学后记:学生对面面垂直的性质一时还理解不够深入透彻,应通过练习巩固深化,提高思维能力,特别是应用线面垂直的性质、面面垂直的性质定理的来解决一些问题(主要是用来解决证明线线平行、线面垂直的)的能力还需通过多加练习和思考。

1 / 3
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功