1/6《2、5、3的倍数的特征》教材分析(第17~22页)这部分内容是在因数、倍数的基础上进行教学的,是求最大公因数、最小公倍数的重要基础,从而也是学习约分和通分的必要前提。学生的分数运算是否熟练,取决于约分和通分掌握得是否熟练,而约分和通分是否熟练,在很大程度上取决于能不能很快地根据分子、分母的特征看出分子和分母有什么公因数,能不能很快地求出几个分数的分母的公倍数。因此,熟练掌握2、5、3的倍数的特征,具有十分重要的意义。教材先教学2、5的倍数的特征,再教学3的倍数的特征。因为2、5的倍数的特征仅仅体现在个位上的数,比较明显,容易理解。而3的倍数的特征,不能只从个位上的数来判定,必须把其各位上的数相加,看所得的和是否为3的倍数来判定,学生理解起来有一定的困难,因此把它放在2、5的倍数的特征后面教学。1.2的倍数的特征。编写意图教材从学生已有的生活经验和知识基础出发,通过电影院里“双号”的概念,使学生利用因数和倍数的概念,判断出这些“双数”都是2的倍数。然后引导学生观察这些座位号的个位上的数的特点,进而概括出2的倍数的特征。在学生总结了2的倍数的特征的基础上,教材又介绍了偶数和奇数的概念。2/6教学建议教学时,可以先让学生观察情境图,并联想在生活中哪儿还见过双数、单数,如街道或胡同一边的门牌号是双数,另一边是单数。接下来,让学生思考:为什么这些数称为双数?它们和2有什么联系?(学生在生活中已经具备了“双”即为“2个”的经验。)引导学生列出它们与2的倍数关系,说明这些数都是2的倍数。也可以让学生联系前面学过的2的倍数的求法,说出若干个2的倍数。在此基础上,引导学生通过观察,发现这些数的个位上都是0、2、4、6、8,从而形成猜想:所有2的倍数的个位上都是0、2、4、6、8。因此,判断一个数是不是2的倍数,只要看这个数的个位上是什么数就可以了。接下来,可以让学生举出一些数(包括比较大的数,如1045、8394)进行验证。由于2的倍数的个数是无限的,无法一一验证,在这儿,只要学生通过观察有限个2的倍数的特征,总结出所有2的倍数的特征就可以了,不要求严格的数学证明(见参考资料)。接下来,介绍偶数和奇数的概念。我们在这个单元中一般不考虑0,在这儿需要作一个特殊说明,因为0也是2的倍数,因此0也是偶数。学生掌握了偶数和奇数的定义后,教师可以给出一些数,让学生判断它们是奇数还是偶数,也可以让学生再举出一些偶数和奇数。在此基础上,可以引导学生将2的倍数的特征表示为“个位上是偶数的都是2的倍数”。2.5的倍数的特征。3/6编写意图编排方式与2的倍数的特征相似,也是通过实际情境引入,让学生在观察5的倍数的个位上的数的特点基础上概括出5的倍数的特征。教学建议教学时,可以参照2的倍数的特征的教法进行。完成“做一做”的题目时,可以使学生初步感受公倍数的概念,并引导学生总结出:如果一个数既是2的倍数又是5的倍数,那它必定是10的倍数,也就是末尾有0的数(0除外)。3.3的倍数的特征。4/6编写意图更加突出学生的自主探索,使学生在观察——猜想——推翻猜想——再观察——再猜想——验证的过程中,概括出3的倍数的特征。教材上通过逐步增加提示的方式,减缓学生在概括时的思考难度。教学建议教学时,要引导学生经历观察、猜测、验证的完整过程。由于学生在概括2和5的倍数的特征时,只注意到了个位数,因此,学生在概括3的倍数时,也会很自然地寻找个位上的数的特征。但通过观察,发现这些数的个位上的数有的是3的倍数,有的不是,于是产生认知冲突。接下来,经过进一步提示,引导学生观察各位上数的和,发现各位上数的和是3的倍数。于是,形成新的猜想:一个数如果是3的倍数,那么它各位上数的和也是3的倍数。为了验证这一猜想,可以补充一些其他的数,如49×3=147,166×3=498等,使学生进一步确认这一结论的正确性。还可以任意写一个数,利用这一结论来验证,如3697,3+6+9+7=25,25不是3的倍数,而3697÷3也不能得到整数商,因此,它不是3的5/6倍数。通过这样的方式也使学生认识到:找出某个规律后,还要找出一些正面的、反面的例子进行检验,看是不是普遍适用。为了使学生更好地掌握3的倍数的特征,进行课堂练习时,还可以把一些数各个数位上的数经过不同的排列,再让学生判断,以加深对“各位上数的和是3的倍数”的理解。如完成“做一做”第1题时,学生判断完45是3的倍数后,教师可以再让学生判断一下54是不是3的倍数。完成“做一做”第2题时,要引导学生有序地思考问题。第18页的“做一做”已经有所铺垫,学生已经知道只有末尾是0的数才能同时是2和5的倍数,而此题中所求的数又是一个三位数,所以,就要从几百几十中找这样的数,这样,每增加一个条件,符合条件的数的范围就缩小一些,通过层层“筛选”,求出符合条件的数是120。利用2、5、3的倍数的特征来判断一个数是不是2、5或3的倍数,其方法是比较容易掌握的,但要形成较好的数感,达到熟练判断的程度,也不是一、两节课所能解决的,还需要进行较多的练习进行巩固。4.关于练习三中一些习题的说明和教学建议。第2题,是让学生寻找生活中的奇数和偶数,应鼓励学生尽量多地发现身边的数学信息,如住几号楼,公共汽车是几路的,全村有几户人家,全班有多少人,等等。有了这些数据后,还可以在后面的练习中进一步判断它们是不是2、5、3的倍数。第5题,是一个解决实际问题的题目。由于妈妈买的是一些马蹄莲和郁金香,马蹄莲10元1枝,所以它的总价是10的倍数,也就是整十数,而郁金香是5元1枝,所以它的总价是5的倍数,个位上是0或5,两者合起来的总价一定是几十元或几十五元,因此,服务员找的钱数不对。第7题是开放题,要运用3的倍数的特征来解决。如想“□7是3的倍数”,就要想“□+7是3的倍数”,□中符合条件的数有2、5、8。第8题也是开放题,要找出一个偶数,同时又是3的倍数,可以先确定该数的个位上的数,再根据3的倍数的特征来确定其他位的数。而要找一个奇数,同时又是5的倍数,也是先确定个位上的数必须是5,其他数位上可以取任意数。第10题,可以先把从4张卡片里取3张所能组成的所有三位数列出来:6/6430、403、340、304,450、405、540、504,350、305、530、503,435、453、345、354、534、543。罗列的时候,要引导学生采用有序的思考方式,保证不重复、不遗漏。然后再分别看这些数属于下面的哪一类。也可以先根据下面各类数的特点确定范围,如这些数字能组成的偶数,个位数只能是0和4,那么相应的数就有430、340、350、530、450、540,304、504、354、534。再如,由于这4张卡片中的3个数相加之和是3的倍数的情况有4+5+0=9,4+3+5=12,因此能组成的3的倍数有450、405、540、504;345、354、435、453、534、543。教学时,还可以把本题进一步拓展,如让学生思考用这4张卡片能组成的3的倍数中,一位数有哪些,两位数、四位数呢?第11*题,是让学生进一步探索偶数和奇数的性质。练习时,可以让学生结合具体的数来理解。