-1-第十七章函数及其图像章末测试(二)一.选择题(共8小题,每题3分)1.在函数y=中,自变量x的取值范围是()A.x>2B.x≥2C.x≠0D.x≠22.在函数y=中,自变量x的取值范围是()A.x≥﹣2且x≠0B.x≤2且x≠0C.x≠0D.x≤﹣23.甲、乙两人沿相同的路线由A到B匀速行进,A、B两地间的路程为16km,他们行进的路程s(km)与甲出发后的时间t(h)之间的函数图象如图所示,则下列判断错误的是()A.乙比甲晚出发1hB.甲比乙晚到B地2hC.甲的速度是4km/hD.乙的速度是8km/h(第3题)(第4题)(第5题)4.如图,某电信公司提供了A,B两种方案的移动通讯费用y(元)与通话时间x(元)之间的关系,则下列结论中正确的有()(1)若通话时间少于120分,则A方案比B方案便宜20元;(2)若通话时间超过200分,则B方案比A方案便宜12元;(3)若通讯费用为60元,则B方案比A方案的通话时间多;(4)若两种方案通讯费用相差10元,则通话时间是145分或185分.A.1个B.2个C.3个D.4个5.已知一次函数y=kx+b的图象如图,则k、b的符号是()A.k>0,b>0B.k>0,b<0C.k<0,b>0D.k<0,b<06.对于函数y=﹣k2x(k是常数,k≠0)的图象,下列说法不正确的是()A.是一条直线B.过点(,﹣k)C.经过一、三象限或二、四象限D.y随着x增大而减小-2-7.如图,一次函数y1=k1x+b的图象和反比例函数y2=的图象交于A(1,2),B(﹣2,﹣1)两点,若y1<y2,则x的取值范围是()A.x<1B.x<﹣2C.﹣2<x<0或x>1D.x<﹣2或0<x<1(第7题)(第8题)8.已知如图,一次函数y=ax+b和反比例函数y=的图象相交于A、B两点,不等式ax+b>的解集为()A.x<﹣3B.﹣3<x<0或x>1C.x<﹣3或x>1D.﹣3<x<1二.填空题(共6小题.每题3分)9.已知点P(1,﹣4)在反比例函数y=的图象上,则k的值是_________.10.若点A(1,y1)和点B(2,y2)在反比例函数y=图象上,则y1与y2的大小关系是:y1_________y2(填“>”、“<”或“=”).11.已知正比例函数y=kx的图象经过点A(3,6)和B(2,m),则m的值为_________.12.直线y=﹣x+3与x轴、y轴所围成的三角形的面积为_________.13.下列关于反比例函数y=的三个结论:①它的图象经过点(7,3);②它的图象在每一个象限内,y随x的增大而减小;③它的图象在二、四象限内.其中正确的是_________.14.写出图象经过点(﹣1,1)的一个函数的解析式是_________.-3-三.解答题(共10小题)15.(6分)将长为40cm,宽为15cm的长方形白纸,按图所示的方法粘合起来,粘合部分宽为5cm.问:(1)6张白纸粘合后的总长度为多少?(2)设x张白纸粘合后的总长度为ycm,则y与x之间的函数关系式是什么?(3)30张白纸粘合起来,总长度为多少?16.(6分)在一条笔直的公路上有A、B两地,甲骑自行车从A地到B地,乙骑摩托车从B地到A地,到达A地后立即按原路返回,是甲、乙两人离B地的距离y(km)与行驶时间x(h)之间的函数图象,根据图象解答以下问题:(1)A、B两地之间的距离为_________km;(2)直接写出y甲,y乙与x之间的函数关系式(不写过程),求出点M的坐标,并解释该点坐标所表示的实际意义;(3)若两人之间的距离不超过3km时,能够用无线对讲机保持联系,求甲、乙两人能够用无线对讲机保持联系时x的取值范围.-4-17.(6分)如图,点N(0,6),点M在x轴负半轴上,ON=3OM.A为线段MN上一点,AB⊥x轴,垂足为B,AC⊥y轴,垂足为C.矩形ABOC的面积为2.(1)点M的坐标为_________;(2)求直线MN的解析式;18.(8分)一次函数y=kx+b的图象经过点(1,﹣2)和(3,2).(1)求常数k、b的值;(2)若直线分别交坐标轴于A、B两点,O为坐标原点,求△AOB的面积.-5-19.(8分)如图,正比例函数y=﹣2x与反比例函数y=的图象相交于A(m,2),B两点.(1)求反比例函数的表达式及点B的坐标;(2)结合图象直接写出当﹣2x>时,x的取值范围.20.(8分)如图,点A在反比例函数的图象上.(1)求反比例函数的解析式;(2)在y轴上是否存在点P,使得△AOP是直角三角形?若存在,直接写出P点坐标;若不存在,请说明理由.-6-21.(8分)如图,已知A(﹣4,2)、B(n,﹣4)是一次函数y=kx+b的图象与反比例函数的图象的两个交点.(1)求此反比例函数和一次函数的解析式;(2)根据图象写出使一次函数的值小于反比例函数的值的x的取值范围.22.(8分)如图,一次函数y=kx+b与反比例函数y=的图象交于A(2,1),B(﹣1,﹣2)两点.(1)求m、k、b的值;(2)连接OA、OB,计算三角形OAB的面积;(3)结合图象直接写出不等式kx+b﹣>0的解集.-7-23.(10分)如图,一次函数y=ax﹣1(a≠0)的图象与反比例函数y=(k≠0)的图象相交于A、B两点且点A的坐标为(2,1),点B的坐标(﹣1,n).(1)分别求两个函数的解析式;(2)求△AOB的面积.24.(10分)已知反比例函数y1=的图象与一次函数y2=ax+b的图象交于点A(1,4)和点B(m,﹣2).(1)求这两个函数的关系式;(2)观察图象,写出使得y1<y2成立的自变量x的取值范围;(3)在x轴的正半轴上存在一点P,且△ABP的面积是6,请直接写出点P的坐标.-8-参考答案与试题解析一.选择题(共8小题)1.在函数y=中,自变量x的取值范围是()A.x>2B.x≥2C.x≠0D.x≠2考点:函数自变量的取值范围;分式有意义的条件..专题:计算题.分析:分式有意义的条件:分母不能为0,即让分母不为0即可.解答:解:根据题意得:x﹣2≠0;解得x≠2,故选D.点评:用到的知识点为:分式的分母不能为0.2.在函数y=中,自变量x的取值范围是()A.x≥﹣2且x≠0B.x≤2且x≠0C.x≠0D.x≤﹣2考点:函数自变量的取值范围..专题:函数思想.分析:根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,可以求出x的范围.解答:解:根据题意得:x+2≥0且3x≠0,解得:x≥﹣2且x≠0.故选A.点评:考查了函数自变量的范围,函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.3.甲、乙两人沿相同的路线由A到B匀速行进,A、B两地间的路程为16km,他们行进的路程s(km)与甲出发后的时间t(h)之间的函数图象如图所示,则下列判断错误的是()-9-A.乙比甲晚出发1hB.甲比乙晚到B地2hC甲的速度是4km/hD.乙的速度是8km/h考点:函数的图象..专题:行程问题.分析:根据图象上的特殊点的坐标和实际又因即可求出答案.解答:解:分析题意和图象可知:乙比甲晚出发1h;甲比乙晚到B地4﹣2=2h;甲的速度是16÷4=4km/h;乙的速度是16÷1=16km/h.故选D.点评:本题主要考查了函数图象的读图能力.要能根据函数图象的性质和图象上的数据分析得出函数的类型和所需要的条件,结合实际意义得到正确的结论.4.如图,某电信公司提供了A,B两种方案的移动通讯费用y(元)与通话时间x(元)之间的关系,则下列结论中正确的有()(1)若通话时间少于120分,则A方案比B方案便宜20元;(2)若通话时间超过200分,则B方案比A方案便宜12元;(3)若通讯费用为60元,则B方案比A方案的通话时间多;(4)若两种方案通讯费用相差10元,则通话时间是145分或185分.A.1个B.2个C.3个D.4个考点:函数的图象..专题:压轴题;数形结合.-10-分析:根据图象知道:在通话170分钟收费一样,在通话120时A收费30元,B收费50元,其中A超过120分钟后每分钟加收0.4元,B超过200分钟加收每分钟0.4元,由此即可确定有几个正确.解答:解:依题意得A:(1)当0≤x≤120,yA=30,(2)当x>120,yA=30+(x﹣120)×=0.4x﹣18;B:(1)当0≤x<200,yB=50,当x>200,yB=50+(x﹣200)=0.4x﹣30,所以当x≤120时,A方案比B方案便宜20元,故(1)正确;当x≥200时,B方案比A方案便宜12元,故(2)正确;当y=60时,A:60=0.4x﹣18,∴x=195,B:60=0.4x﹣30,∴x=225,故(3)正确;当B方案为50元,A方案是40元或者60元时,两种方案通讯费用相差10元,将yA=40或60代入,得x=145分或195分,故(4)错误;故选:C.点评:此题主要考查了函数图象和性质,解题的关键是从图象中找出隐含的信息解决问题.5.已知一次函数y=kx+b的图象如图,则k、b的符号是()A.k>0,b>0B.k>0,b<0C.k<0,b>0D.k<0,b<0考点:一次函数图象与系数的关系..分析:由图可知,一次函数y=kx+b的图象经过二、三、四象限,根据一次函数图象在坐标平面内的位置与k、b的关系作答.解答:解:由一次函数y=kx+b的图象经过二、三、四象限,又有k<0时,直线必经过二、四象限,故知k<0,再由图象过三、四象限,即直线与y轴负半轴相交,所以b<0.故选D.-11-点评:本题主要考查一次函数图象在坐标平面内的位置与k、b的关系.解答本题注意理解:直线y=kx+b所在的位置与k、b的符号有直接的关系.k>0时,直线必经过一、三象限;k<0时,直线必经过二、四象限;b>0时,直线与y轴正半轴相交;b=0时,直线过原点;b<0时,直线与y轴负半轴相交.6.对于函数y=﹣k2x(k是常数,k≠0)的图象,下列说法不正确的是()A.是一条直线B.过点(,﹣k)C.经过一、三象限或二、四象限D.y随着x增大而减小考点:正比例函数的性质..分析:先判断出函数y=﹣k2x(k是常数,k≠0)图象的形状,再根据函数图象的性质进行分析解答.解答:解:∵k≠0∴﹣k2>0∴﹣k2<0∴函数y=﹣k2x(k是常数,k≠0)符合正比例函数的形式.∴此函数图象经过二四象限,y随x的增大而减小,∴C错误.故选C.点评:本题考查了正比例函数的性质,解题的关键是了解正比例函数的图象及其性质.7.如图,一次函数y1=k1x+b的图象和反比例函数y2=的图象交于A(1,2),B(﹣2,﹣1)两点,若y1<y2,则x的取值范围是()A.x<1B.x<﹣2C.﹣2<x<0或x>1D.x<﹣2或0<x<1-12-考点:反比例函数与一次函数的交点问题..专题:数形结合.分析:根据一次函数图象位于反比例函数图象的下方,可得不等式的解.解答:解:一次函数图象位于反比例函数图象的下方,由图象可得x<﹣2,或0<x<1,故选:D.点评:本题考查了反比例函数与一次函数的交点问题,一次函数图象位于反比例函数图象的下方是解题关键.8.已知如图,一次函数y=ax+b和反比例函数y=的图象相交于A、B两点,不等式ax+b>的解集为()A.x<﹣3B.﹣3<x<0或x>1C.x<﹣3或x>1D.﹣3<x<1考点:反比例函数与一次函数的交点问题..专题:数形结合.分析:观察函数图象得到当﹣3<x<0或x>1时,一次函数图象都在反比例函数图象上方,即有ax+b>.解答:解:不等式ax+b>的解集为﹣3<x<0或x>1.故选:B.点评:本题考查了反比例函数与一次函数的交点问题:反比例函数与一次函数图象的交点坐标满足两函数解析式.也考查了观察函数图象的能力.二.填空题(共6小题)9.已知点P(1,﹣4)在反比例函数y=的图象上,则k的值是﹣4.-13-考