第二课时离散型随机变量的均值一、基础过关1.某班有14的学生数学成绩优秀,如果从班中随机地找出5名学生,那么其中数学成绩优秀的学生数X~B5,14,则E(-X)的值为()A.14B.-14C.54D.-542.甲、乙两台自动车床生产同种标准的零件,X表示甲车床生产1000件产品中的次品数,Y表示乙车床生产1000件产品中的次品数,经过一段时间的考察,X,Y的分布列分别是:X0123P0.70.10.10.1Y0123P0.50.30.20据此判定()A.甲比乙质量好B.乙比甲质量好C.甲与乙质量一样D.无法判定3.某城市有甲、乙、丙3个旅游景点,一位客人游览这三个景点的概率分别是0.4,0.5,0.6,且此人是否游览哪个景点互不影响,设ξ表示客人离开该城市时游览的景点数与没有游览的景点数之差的绝对值.则Eξ等于()A.1.48B.0.76C.0.24D.14.同时抛掷两颗骰子,至少有一个3点或6点出现时,就说这次试验成功,则在9次试验中,成功次数ξ的数学期望是________.5.某毕业生参加人才招聘会,分别向甲、乙、丙三个公司投递了个人简历.假定该毕业生得到甲公司面试的概率为23,得到乙、丙两公司面试的概率均为p,且三个公司是否让其面试是相互独立的,记X为该毕业生得到面试的公司个数.若P(X=0)=112,则随机变量X的数学期望EX=________.二、能力提升6.马老师从课本上抄录一个随机变量ξ的分布列如下表:x123P(ξ=x)?!?请小牛同学计算ξ的数学期望,尽管“!”处无法完全看清,且两个“?”处字迹模糊,但能断定这两个“?”处的数值相同.据此,小牛给出了正确答案Eξ=________.7.一个篮球运动员投篮一次得3分的概率为a,得2分的概率为b,不得分的概率为c(a、b、c∈(0,1)),已知他投篮一次得分的数学期望为1(不计其他得分情况),则ab的最大值为________.8.一个均匀小正方体的六个面中,三个面上标以数0,两个面上标以数1,一个面上标以数2,将这个小正方体抛掷2次,则向上的数之积的数学期望是______.9.设l为平面上过点(0,1)的直线,l的斜率等可能地取-22,-3,-52,0,52,3,22,用X表示坐标原点到l的距离,则随机变量X的数学期望EX=________.10.节日期间,某种鲜花的进价是每束2.5元,售价是每束5元,节后对没有卖出的鲜花以每束1.6元处理.根据前5年节日期间对这种鲜花需求量ξ(束)的统计(如下表),若进这种鲜花500束在今年节日期间销售,则利润的均值是多少元?ξ200300400500P0.200.350.300.1511.某商场为刺激消费,拟按以下方案进行促销:顾客每消费500元便得到抽奖券一张,每张抽奖券的中奖概率为12,若中奖,商场返回顾客现金100元.某顾客现购买价格为2300元的台式电脑一台,得到奖券4张.每次抽奖互不影响.(1)设该顾客抽奖后中奖的抽奖券张数为ξ,求ξ的分布列;(2)设该顾客购买台式电脑的实际支出为η(元),用ξ表示η,并求η的数学期望.三、探究与拓展12.本着健康低碳的生活理念,租自行车骑游的人越来越多.某自行车租车点的收费标准是每车每次租车时间不超过两小时免费,超过两小时的部分,每小时收费2元(不足1小时的部分按1小时计算).有甲、乙两人相互独立来该租车点租车骑游(各租一车一次).设甲、乙不超过两小时还车的概率分别为14,12;两小时以上且不超过三小时还车的概率分别为12,14;两人租车时间都不会超过四小时.(1)求甲、乙两人所付的租车费用相同的概率;(2)设甲、乙两人所付的租车费用之和为随机变量ξ,求ξ的分布列及数学期望Eξ.答案1.D2.A3.A4.55.536.27.1248.499.4710.解节日期间这种鲜花需求量的均值为Eξ=200×0.20+300×0.35+400×0.30+500×0.15=340(束).设利润为η,则η=5ξ+1.6×(500-ξ)-500×2.5=3.4ξ-450,所以Eη=3.4Eξ-450=3.4×340-450=706(元).11.解(1)由于每张奖券是否中奖是相互独立的,因此ξ~B(4,12).∴P(ξ=0)=C04×(12)4=116,P(ξ=1)=C14×(12)4=14,P(ξ=2)=C24×(12)4=38,P(ξ=3)=C34×(12)4=14,P(ξ=4)=C44×(12)4=116.其分布列为ξ01234P116143814116(2)∵ξ~B(4,12),∴Eξ=4×12=2.又由题意可知η=2300-100ξ,∴Eη=E(2300-100ξ)=2300-100Eξ=2300-100×2=2100元.即所求变量η的期望为2100元.12.解(1)由题意得,甲、乙在三小时以上且不超过四小时还车的概率分别为14,14.记甲、乙两人所付的租车费用相同为事件A,则P(A)=14×12+12×14+14×14=516.故甲、乙两人所付的租车费用相同的概率为516.(2)ξ可能取的值有0,2,4,6,8.P(ξ=0)=14×12=18;P(ξ=2)=14×14+12×12=516;P(ξ=4)=12×14+14×12+14×14=516;P(ξ=6)=12×14+14×14=316;P(ξ=8)=14×14=116.∴甲、乙两人所付的租车费用之和ξ的分布列为ξ02468P18516516316116∴Eξ=0×18+2×516+4×516+6×316+8×116=72.