第一章合成氨1.合成氨的主要生产工序,各工序的作用和任务?答:1.原料气制备,制备含有氢、氮的原料气。用煤、原油或天然气作原料,制备含氮、氢气的原料气。2.净化,因为无论用何种方法造气,原料气中都含有对合成氨反应过程有害的各种杂质,必须采取适当的方法除去这些杂质,主要包括变换过程、脱硫脱碳过程以及气体精制过程。3.压缩和合成,将纯净的氢、氮混合气压缩到高压,在铁催化剂的作用下合成氨。2.写出烃类蒸汽转化的主要反应。CH4+H2O(g)=CO+3H2,CH4=2H2+C3.简述常用脱硫方法及技术特点以及适用流程。答:干法脱硫(氧化锌法脱硫;钴钼加氢脱硫法)是用固体吸收剂吸收原料气体中的硫化物一般只有当原料气中硫化氢质量浓度不高标准状态下在3-5g/m3才适用。特点:能脱除有机硫和无机硫而且可以把脱得很精细,但脱硫剂不能再生而且设备庞大占地多,不适用于脱除大量无机硫,只有天然气、油田气等含硫低时才使用;湿法脱硫(化学吸收法,物理吸收法,化学-物理综合吸收法)特点:脱硫剂是便于运输的液体物料,脱硫剂是可以再生并且能回收的硫磺,适用于脱除大量无机硫。4.改良ADA法脱硫的主要化学反应和脱硫原理是什么?ADA法脱硫主要化学反应及脱硫原理:在脱硫塔中用PH为8.5--9.2的稀碱溶液吸收硫化氢并生成硫化氢物:液相中的硫化氢物进一步与偏钒酸钠反应,生成还原性焦性偏钒酸钠盐并析出无素硫还原性焦性偏钒酸钠盐接着与氧化态ADA反应,生成还原态的ADA和偏钒酸盐还原态的ADA被空气中的氧气氧化成氧化态的ADA,其后溶液循环使用4.少量CO的脱除方法有哪些?答:铜氨液洗涤法、甲烷化法、液氮洗涤法。5.以天然气为原料生产合成气过程有哪些主要反应?答:主反应:CO+H2O(g)=H2+CO2,CH4+H2O(g)=CO+3H2副反应:CH4=2H2+C,2CO=C+CO2,CO+H2=H2O+C6.简述一段转化炉的炉型结构。答:例如侧壁烧嘴转化炉,在上面的对流段从上往下依次是,烟道气出口、热回收系统、进料气和蒸汽进口,猪尾管。辐下面的射段有两个反应管,包括催化剂管、烧嘴(气+空气)下端连接猪尾管是气体汇集总管,去往二段转化炉。7.写出一氧化碳变换的反应?影响该反应的平衡和速度的因素有哪些?为什么该反应存在最佳反应温度?最佳反应温度与哪些参数有关?答:CO+H2O=CO2+H2,温度、压力、水蒸气比例;因为变换反应是可逆放热的反应,故存在最佳反应温度。与平衡温度、正逆反应的活化能有关。8.一氧化碳变换催化剂有哪些类型?各适用于什么场合?使用中注意哪些事项?答:中变催化剂,即以三氧化二铁为主体,以氧化铬为主要添加物的多成分铁铬系催化剂。适用于一氧化碳或氢的含量不高,升温速度缓慢的情况下。低变催化剂,主要是以氧化铜为主体。适用于操作温度高于气体的露点温度的情况下。9.氨合成反应的平衡常数K随温度和压力是如何变化的?答:平衡常数K仅与温度有关,与压力无关,随温度升高,K值减小。10.合成氨中影响反应速度的因素有哪些?答:温度、压力、空速、氢氮比。SNaOHOVNaOHNaVONaHS244294223(H)ADANaVOO=HNaOHADAOVNa2422329423322NaHCONaHSCONaSHOHADAOADA(H)2222211.简述氨合成催化剂活性组分与助剂的作用。答:铁系催化剂其活性组分为金属铁,促进剂作用如下:Al2O3能与氧化铁生成FeAl2O4晶体,其晶体结构与Fe2O3*FeO相同,可增加催化剂表面积,提高活性。MgO:增强催化剂对硫化物的抗毒能力,延长催化剂寿命。CaO:降低熔融物的熔点和粘度,提高催化剂热稳定性。K2O:促使催化剂的电子逸出功的降低。SiO2:中和碱性组分,提高催化剂抗水毒害和耐烧结的作用。12.比较凯洛格和托普索氨合成工艺的优缺点?答:凯洛格和托普索的最大区别其实还是在合成塔的内件上的区别,其次就是合成回路中冷冻系统的设置,一个一般为三级氨冷;一个为二级氨冷。13.简述合成氨中径向合成塔的特点。答:1.气体通过催化剂床层路径短,通气截面积大,气流速度慢,气流阻力只有轴向的10%-30%,从而可以提高空速,增大塔的生产能力。2.可采用小粒度的催化剂,减少内扩散的影响,提高内表面利用率和净氮值。3.有利于粗哈静的均匀还原,得到活性良好的催化剂。4.降低压强降,适应离心压缩机的使用要求,降低动力消耗。14.简述合成氨中冷激式合成塔与冷管式合成塔相比主要优缺点。优点1.结构简单,安装检修方便。2.催化剂均匀填放,温度和气体分布均匀并可选用多种活性温度范围的催化剂。3.用冷激气量控制温度,操作简便,可接近最适温度生产。4.床层通气截面大,气流阻力小。缺点1.冷激气在汇合前未参与反应,起稀释作用,同样产量时,比冷凝塔用催化剂多,生产强敌度较低。2.换热器换热面积较大。3.冷激气要求纯度高。15.甲烷蒸汽转化过程中,析碳所发生的反应有哪些?如何解决析碳的发生?答:CH4→C+2H2,2CO→C+CO2,CO+H2→C+H2O从化学平衡的角度考虑,提高水碳比有利于甲烷转化,而且对抑制积炭也是有利的。但水炭比提高,会引起水蒸气耗能增加,炉管热负荷加大,炉管内气流阻力增加。%因此,在满足工艺要求的前提下,要尽可能降低水碳比。16.甲烷蒸汽转发过程中,影响甲烷蒸汽转化平衡组成的因素有哪些?答:温度、压力和水碳比。温度对甲烷蒸汽转化的平衡有很大影响,温度越低,平衡常当选越大,转化气中甲烷含量越低。加压对甲烷的转化不利,由于甲烷蒸汽转化为体积增大的反应,在一定温度下,压力越高,转化气甲烷含量越高。水碳比也是影响甲烷蒸汽转化的主要因素,在一定的压力下,水碳比越高,转化气中甲烷含量越低。第二章化学肥料1影响尿素合成反应化学平衡的因素有哪些?答:温度、压力、氨碳比、水碳比。2尿素生产中发生的主要反应有哪些?主要副反应是什么?答:主要反应:2NH3(l)+CO2(l)=NH4COONH2(l),NH4COONH2(l)=CO(NH2)2(l)+H2O(l)副反应:缩合反应:2NH4CONH2=NH4CONHCONH2+NH3水解反应:CO(NH2)2+H2O=NH4COONH2)+H2O=(NH4)2CO3+H2O=CO2+NH33提高尿素合成反应温度的利与弊有哪些?答:有利方面:1、温度升高,转化率也升高;2、温度升高,加快反应速度,使之很快接近平衡,每提高10℃可以提高2—4倍;不利方面:1、当温度达到最高温度限时,转化率开始下降;2、提高了温度亦提高了溶液的平衡蒸汽压,增加CO2压缩机等功耗;3、温度升高,提高了溶液的腐蚀性4吸收塔在尿素生产过程中有何作用?答:1、尿素合成反应是可逆的化学反应,转化率只有52%-79%,存在大量未反应的氨和二氧化碳,需要回收;2、尿素合成均采用过剩NH3,系统中存在大量游离氨,需要回收;3、吸收通过水溶液方式,在吸收塔内将未反应的NH3和CO2予以回收,返回合成系统,实现在不同压力和温度下的全循环,杜绝了浪费和环境污染;4、尿素全循环工艺决定的。5尿素合成的反应机理是什么?答:尿素合成反应的机理分两步:第一步为液氨和二氧化碳反应生成液体氨基甲酸铵,此称为甲铵生成反应:2NH3(l)+CO2(g)→NH4COONH2(l)第二步为甲铵脱水生成尿素,称为甲铵脱水反应:NH4COONH2(l)→CO(NH2)2(l)+H2O(l)6氨和硝酸中和反应制取硝铵的过程中,影响氮损失的主要因素有哪些?答:1.温度高,氨和硝酸的挥发和分解加快,氮损失增加。2.硝酸质量分数高,中和反应放热多,因而会提高反应器内温度,使硝酸分解加快,并且蒸出的水分也多,被他夹带的含氮组分也多。3.氨气纯度低,惰气含量多,排放尾气多,排放损失也会增大。4.氨与硝酸的比例。5.中和器设计不当,气液两相接触不良都会加剧氮的损失。7简述湿法生产磷酸的基本原理,并写出化学方程式。答:用酸分解磷矿制得的磷酸统称湿法磷酸,而用硫酸分解磷矿制取磷酸的方法是湿法磷酸生产中最主要的方法。即用硫酸处理天然磷矿[主要成分为3Ca(PO4)2•CaF2]分解生成磷酸溶液及难溶性的硫酸钙沉淀。Ca5F(PO4)3+5H2SO4+5nH2O===3H3PO4+5CaSO4·nH2O+HF实际上,反应分两步进行。第一步是磷矿和循环料浆(或返回系统的磷酸)进行顶分解反应,循环的料浆中含有磷酸且循环量很大,磷矿首先溶解在过量的磷酸溶液中生成磷酸一钙:Ca5F(PO4)3+7H3PO4===5Ca(H2PO4)2+HF↑第二步为上述的磷酸一钙料浆与稍过量的硫酸反应生成硫酸钙结晶与磷酸溶液:Ca(H2PO4)2+5H2SO4+5nH2O===5CaSO4·nH2O+10H3PO48简述普通过磷酸钙的生产原理以及为何第二阶段反应慢?答:主要化学反应是硫酸与矿粉中的氟磷灰石的作用,首先生成磷酸和半水硫酸钙,然后硫酸钙再与矿粉反应生成磷酸二氢钙。第二阶段反应慢是因为第二阶段还存在硫酸钙脱水反应9试写出尿素合成过程中发生的三个主要副反应的名称及化学反应方程式。答:①尿素水解反应:NH2CONH2+H2O=2NH3+CO2;②缩合反应:2NH2CONH2=NH2CONH2+NH3;③异构反应:NH2CONH2=NH4NCO,NH4NCO=NH3+HNCO10解吸塔在尿素生产中的作用?答:1、回收蒸发冷凝液及其它含NH3液体中的NH3和CO2返回合成系统。2、排掉尿素生产过程中生成的水。第三章硫酸与硝酸1简述接触法生产硫酸,生产过程通常包括的基本步骤。答:二氧化硫炉气的制造、二氧化硫的催化氧化、三氧化硫的吸收。2炉气净化的目的如何?为什么炉气中含SO3反而不利?答:避免使二氧化硫转化的钒催化剂中毒,和成品酸的着色,减少杂质对设备和管道的腐蚀性。SO3本身无毒,但在一定条件下可与氟结合形成酸雾,酸雾在洗涤设备中较难吸收,带入转化系统会降低二氧化硫转化率,腐蚀设备和管道。3分析SO3吸收过程换热器设置的方式及特点简述两次转化两次吸收流程的优点。答:催化氧化后的转化气从吸收塔底进入,98.3%的浓硫酸从塔顶喷淋,气液两相逆流接触SO3被完全吸收。进塔气体温度维持在140-160℃空塔气速在0.5-0.9m/s,吸收在常压下进行。喷淋酸温度控制在50℃以下,出塔酸温度用喷淋量控制,使之小于70℃。吸收塔流出的酸浓度比进塔酸提高0.3%-0.5%,经排管冷却器冷却后送往循环槽,用干燥塔来的变稀硫混合,不足的水分由新鲜水补充,再用酸泵输送,除循环外,不分送往干燥塔,部分抽出作为产品。此流程冷却器位于泵前,为泵前流程。特点是输送过程中酸的压头小,操作安全。冷却器位于泵后,为泵后流程,酸由泵强制输送通过冷凝器,传热效果好,但酸因受压易泄露4简述沸腾焙烧炉的优点和缺点答:优点:1生产强度大2硫的烧出率高3传热系数高4能得到较高浓度的二氧化硫炉气5适用的原料范围广6结构简单,材料省缺点:炉气带出炉尘量大,使炉气净制系统的负荷加重,加重了设备的磨损,要增加粉碎系统和高压鼓风机,动力消耗多。第3页,共6页5提高硫铁矿焙烧速率的主要途径有哪些?答:1提高焙烧温度2减少矿石粒度3增加空气与矿粒的相对运动,采用沸腾焙烧炉4提高入炉空气氧体积分数6简述氨催化氧化制取硝酸的主要反应和副反应.答:主反应:4NH3+5O2=4NO+6H2O,4NH3+4O2=2N2O+6H2O,4NH3+3O2=2N2+6H2O副反应:2NH3=3N2+3H2,2NO=N2+O2,4NH3+6NO=5N2+6H2O,7硫酸生产中两转两吸流程的基本特点是什么?答:二氧化硫炉气经过三段转化后,送入中间吸收塔吸收SO3,未被吸收的气体返回第四段转化气转化,然后送吸收塔吸收SO3。由于两次转化间增加了吸收工艺除去SO3,有利于后续转化反应进行的更完全。8SO2催化氧化工艺条件如何确定?答:1催化剂——钒催化剂V2O55%~9%,为活性组份。K2O9%~13%碱金属盐为助催化剂。SO310%—20%SiO250