动物生物化学AnimalBiochemistry省级精品课程江苏省高校教学名师、《动物生物化学》(第4版)主编邹思湘教授、博士生导师南京农业大学动物医学院基础兽医系逸夫楼3011,电话:84396763第1章绪论本章主要内容:生物化学的概述生物化学研究的内容生物化学的发展历史与现状与动物生产和动物健康的关系1.生物化学概述1.1生物化学的定义:生物化学(biochemistry):是从分子水平上阐明生命有机体化学本质的一门学科。1.2生物化学的分类:①根据研究对象分为:动物生物化学、植物生物化学、微生物生物化学等。②根据研究目的分为:医学生化、农业生化、工业生化、环境生化和营养生化等。2.生物化学研究内容2.1关于生命有机体的化学组成、生物分子,特别是生物大分子(biologicalmacromolecule)的结构、相互关系及其功能。生物大分子是由小分子单体聚合而成的多聚体。如氨基酸—蛋白质、核苷酸—核酸、葡萄糖—淀粉等。生物大分子执行着各种各样的生物学功能,如生物催化、物质运输、代谢调节、贮存、传递与表达遗传信息等。它们复杂的空间结构是其功能的化学基础。N2CO2H2O单体生物大分子细胞器细胞细胞2.2细胞中的物质代谢与能量代谢,或称中间代谢(intermediarymetabolism),也就是细胞中进行的化学过程合成代谢(anabolism):将小分子的前体(precursor)经过特定的代谢途径构建成较大的分子,并且消耗能量。分解代谢(catabolism):将较大的分子经过特定的代谢途径,分解成小的分子并且释放出能量。物质代谢与能量代谢相伴随。在这个过程中,ATP(三磷酸腺苷)是能量转换和传递的中间体。2.3组织和器官机能的生物化学生命有机体是一个统一协调的整体。任何组织器官的形态结构、代谢方式都是以其化学组成和分子结构为基础的。在分子水平、细胞和组织水平以及整体水平上全面、系统地认识动物组织器官的生理机能,认识它们之间的联系、认识它们与环境互作的机制,也是动物生物化学的研究目的之一。3.生物化学的发展历史和现状3.1历史回顾我国古代对于生物化学的发展有重要的贡献。科学发展的道路不是平坦的,人们对事物的认识在正确与错误,真理与谬误的斗争中前进,生物化学的发展也不例外。FriedrichWohler,Eduard和HansBuchner弟兄以及J.Sumner等与“生机论(vitalism)”的谬论进行了长期的争论,“生机论”最后以失败告终。科学的发展也不是单枪匹马的,多学科的互相交叉与渗透、研究技术和实验手段的进步推动和加速了科学进步的步伐。化学、物理学、细胞学、遗传学、微生物学以及电子显微镜、超离心(ultra-centrifugation)、色谱(chromatography)、同位素示踪(isotopetracing)、X-射线衍射(X-rayreflection)、质谱(masschromatography)以及核磁共振(nuclearmagneticresonance)等技术都为现代生物化学的发展作出了重要贡献。1953年Watson和Crick描绘出了DNA的双螺旋结构模型,这在生命科学发展历史上是一个具有里程碑意义的重大事件。生命科学从此进入了分子生物学新时代。悼念克里克生物化学与分子生物学都以从分子水平上认识生命、诠释生命为目标。广义地说,两者没有截然的区别。只是前者注重生命有机体的化学过程,后者更强调生物分子的结构与功能,尤其是在遗传分子核酸方面。3.2生物化学的前景和现状目前,有关生物化学的研究主要集中在以下几个方面:生物大分子的结构、功能与相互作用基因组学和蛋白质组学基因表达的调节细胞信号的传导生物工程学分子生物学的迅速发展从根本上改变了生命科学的面貌,也极大地丰富和扩展了生物化学的内涵。一方面,经典的生物化学原理不断得到验证,另一方面,人们对生命有机体中化学过程的认识不断更新和深化,现代生物化学的发展已经从各个方面融入了生命科学发展的主流当中。生物大分子的结构、功能与相互作用大分子之间的相互作用;大分子结构模体(motif)和结构域的独特作用;生物大分子三维构象和构象运动进行描述;蛋白质空间构象的正确折叠和“分子伴侣”(molecularchaperone)的作用;磷酸化、酰基化等化学修饰作用对于蛋白质和酶在快速、高效传递代谢信息和调节基因表达中的机制;核酸与蛋白质的相互作用与基因表达的调节;催化核酸等。信息爆炸导致了结构生物学(structuralbiology)的诞生。蛋白质和核酸大分子之间的相互作用基因组学和蛋白质组学“人类基因组计划”(humangenomeproject,HGP)历经10个年头,在进入本世纪后不久宣布完成,人类基因组的解读为疾病的诊断、防治和新药的研究开发提供了有力的武器。科学家已绘制出40余种生物的基因组图谱,基因组的研究将进入功能基因组(functionalgenomics)阶段,即确定基因结构与功能的应用阶段。蛋白质组学(proteomics)作为后基因组时代生命科学新的研究领域正在崛起。它将一系列精细的技术,主要有2D-凝胶电泳、计算机图象分析、质谱、氨基酸测序和生物信息学结合起来,高通量地、综合地定量和鉴定蛋白质。建立蛋白组的生物信息数据库,将为重大病症的发生提供新的预警和诊断标志,并为新药的开发提供新的思路。大肠杆菌中的蛋白质组基因表达的调节1960年,F.Jacob和J.Monod发现细菌利用乳糖时,相关酶的基因表达时序受到严格的控制,于是提出了原核生物基因调节操纵子(operon)模型,开辟了对基因表达调节研究的新领域。真核基因表达的调控产要涉及核小体的重构、组蛋白的乙酰化、DNA的甲基化等化学修饰和DNA超螺旋的拓扑异构化;基因的的调节也在转录后的加工、翻译和新生多肽链的化学修饰等各个层次上进行。这一领域的研究将最终揭开生命的进化、胚胎的分化、个体的生长、发育、繁殖、衰老、疾病和死亡之谜。细胞信号的传导第二信使学说cAMP、cGMP、IP3、DG、Ca2+等G蛋白偶联系统G蛋白、PKA、PKG、PKC和TPK信号转导系统等小分子气体物质NO、CO生物工程学到70年代,重组DNA技术(RecombinantDNAtechnology)诞生,人类可以按照自己的意愿改造遗传基因和操纵遗传过程。这个技术的规模化和工业化,就是基因工程,也称遗传工程(Geneticengineering)。以基因工程技术为核心,与现代发酵工程、细胞工程、胚胎工程、酶工程、蛋白质工程等集合而成的生物工程学(Biotechnology),已经和正在展现出其推动生产力发展的巨大潜力。遗传工程的工厂4.与动物生产和健康的关系生物化学是生物科学,如农学、医学、畜牧、兽医、水产等的基础学科之一。现代生物化学的理论和实验方法已经作为通用的“语言”与有力的“工具”被广泛用于生命科学的表述和研究之中。它与动物生理学、动物营养学、动物遗传学、动物繁殖学、药理学、动物病理学、微生物学、免疫学、动物疾病诊断学等学科有着不可分割的联系,因此学习和掌握生物化学的知识对于从事动物生产和动物健康事业十分重要。阐明动物新陈代谢活动的规律生理学、营养学培养优质高产的畜禽品种遗传育种药物的作用机理研究和新药的研发药理学、毒理学疾病的发生和发展机理病理学、免疫学、微生物学动物疫病的诊疗与防治临床病理与临床诊断学教学安排与要求(1)教材《动物生物化学》(第四版)(2)学时:54小时(3)课外自习(4)辅导与答疑(5)考试方式参考书1.王镜岩,朱圣庚,徐长法.生物化学(第三版).北京:高等教育出版社,20022.汪玉松,邹思湘,张玉静.现代动物生物化学(第三版).北京:高等教育出版社,20054.DLNelson,MMCox.LehningerPrinciplesofBiochemistry(3rdedition).2000,WorthPublisher5.BergJM,TymoczkoJL,StryerL.Biochemistry(4thedition),2002,Freeman本章结束