学科综合实践活动班级姓名主题神奇的麦比乌斯圈温馨提示学习目标1、认识麦比乌斯圈这一单侧、不可定向曲面,初步感知它的奇妙之处,简单了解麦比乌斯圈的概念在实际生活中的应用。2、通过查找资料,认识并感知麦比乌斯圈。3、培养想象力和创造性思维,进行科学探究。4、学会小组合作学习。5、你通过这个主题你还想学到什么?用品剪刀、彩笔、长方形纸条、胶棒或双面胶小组长提醒麦比乌斯圈的来历1、麦比乌斯圈是由世纪国家、家发现的,所以被后人命名为麦比乌斯圈。2、麦比乌斯发现麦比乌斯圈的灵感来自于。3、麦比乌斯用扭转着做成了一个纸圈儿,又捉了一只放在纸圈儿上爬,当不翻越任何边界就爬遍了纸圈儿的所有部分时,麦比乌斯激动地说:“公正的,你证明了。”自学教材30页“你知道吗”,了解麦比乌斯圈的来历。探究学习1、做一做将一张长方形纸条ABCD的一端AB固定,另一端DC扭转180°后,把AB和CD粘和在一起,得到的曲面就是麦比乌斯圈,也称麦比乌斯带。可参照32页的图,进行扭转、粘贴。2、涂一涂用彩笔在刚刚做好的纸圈儿上的一面涂抹,不跨越任何边界,试试能不能把整张纸圈儿全部涂抹成一种颜色,不留下任何空白。建议用粗一点儿的水彩笔。或是在纸圈儿上画条。3、猜一猜(1)取一张纸条,在其正中间(沿长度方向)划一条线,然后将纸条粘成麦比乌斯圈,最后用剪刀沿中线剪开,会得到什么结果?(2)另取一张纸,在上面划两条线,把纸条三等分,再粘成麦比乌斯圈,最后用剪刀沿画线剪开,又会得到什么结果?先思考、交流,再动手操作沿中线剪沿三等分线剪用简洁明了的语言概括猜想预设实践验证了解麦比乌斯圈查找资料,认识麦比乌斯圈的奇妙之处。拓展学习麦比乌斯圈概念的应用1、学习教材33页的内容2、我找到的(最好有图片)资源共享,在小组中汇报自己学习的成果,同时学习别人的内容。声音洪亮、吐字清楚、语速适中、认真倾听、用心记录。我有话说可以说学到的知识,遇到的问题,学习过程中的感受。附页1:与麦比乌斯有关的故事1、据说有一个小偷偷了一位很老实农民的东西,并被当场捕获,将小偷送到县衙,县官发现小偷正是自己的儿子。于是在一张纸条的正面写上:小偷应当放掉,而在纸的反面写了:农民应当关押。县官将纸条交给执事官由他去办理。聪明的执事官将纸条扭了个弯,用手指将两端捏在一起。然后向大家宣布:根据县太爷的命令应当放掉农民,应当关押小偷。县官听了大怒,责问执事官。执事官将纸条捏在手上给县官看,从“应当”二字读起,确实没错。仔细观看字迹,也没有涂改,县官不知其中奥秘,只好自认倒霉。县官知道执事官在纸条上做了手脚,怀恨在心,伺机报复。一日,又拿了一张纸条,要执事官一笔将正反两面涂黑,否则就要将其拘役。执事官不慌不忙地把纸条扭了一下,粘住两端,提笔在纸环上一划,又拆开两端,只见纸条正反面均涂上黑色。县官的毒计又落空了。现实可能根本不会发生这样的故事,但是这个故事却很好地反映出“莫比乌斯带”的特点。2、它也经常出现在科幻小说里面,由A.J.Deutsch创作的短篇小说《一个叫麦比乌斯的地铁站》为波士顿地铁站创造了一个新的行驶线路,整个线路按照麦比乌斯方式扭曲,走入这个线路的火车都消失不见。3、在日本漫画《哆啦A梦》中,哆啦A梦有个道具的外观就是麦比乌斯带;在故事中,只要将这个环套在门把上,则外面的人进来之后,看到的仍然是外面。4、在日本的艾斯奥特曼第23话《逆转!佐菲登场》中TAC队利用麦比乌斯带的原理,让北斗和南进入异次元空间消灭了亚波人。5、在电玩游戏音速小子-滑板流星故事中最后一关魔王战就是在麦比乌斯带形状的跑道上进行,如果你不打败魔王就会一直在麦比乌斯带上无限循环的滑下去.....6、1988年在日本上映的动画电影机动战士高达逆袭的夏亚以麦比乌斯带作为对命运的隐喻:人类就好比行走在麦比乌斯带上的蚂蚁一般,永远逃不出这个怪圈,不断重复着相同的错误,类同的悲剧也在不断地上演。附页2:奇妙之处一、麦比乌斯环只存在一个面。二、如果沿着麦比乌斯环的中间剪开,将会形成一个比原来的麦比乌斯环空间大一倍的、把纸带的端头扭转了两次再结合的环(并不是莫比乌斯带,在本文中将之编号为:环0),而不是形成两个麦比乌斯环或两个其它形式的环。三、如果再沿着环0的中间剪开,将会形成两个与环0空间一样的、具有正反两个面的环,且这两个环是相互套在一起的(在本文中将之编号为:环1和环2),从此以后再沿着环1和环2以及因沿着环1和环2中间剪开所生成的所有环的中间剪开,都将会形成两个与环0空间一样的、具有正反两个面的环,永无止境……且所生成的所有的环都将套在一起,永远无法分开、永远也不可能与其它的环不发生联系而独立存在。六个特征麦比乌斯环0和生成的所有的环的六个特征:一、麦比乌斯环是通过将正反面其中的一端反转180度与另一端对接形成的,也因此它将正反面统一为一个面,但也因此而存在了一个“拧劲”,我们在此不妨称之为“麦比乌斯环拧劲”1。二、从麦比乌斯环生成为环0需要一个“演变的裂变”过程,此“演变的裂变”过程将“麦比乌斯环拧劲”分解成了因“相通”或“相连”从而分别呈现出“螺旋弧”向下和“螺旋弧”向上两个方向“拧”的四个“拧劲”。这四个“拧劲”中的第一个和第三个的“拧劲”将正面转化为反面,而第二个和第四个的“拧劲”再将反面转化为正面,或者说是,这四个的“拧劲”中的第一个和第三个的“拧劲”将反面转化为正面,而第二个和第四个的“拧劲”再将正面转化为反面,使所生成的环0从而存在了“正反”两个面。三、从麦比乌斯环生成为环0的过程,还使环0具有了因相互转换而最终呈现为同一个方向上的、性质不同的四个“拧劲”。“演变的裂变”过程将麦比乌斯环的“麦比乌斯拧劲”分解成环0中的四个“拧劲”,“麦比乌斯拧劲”的“能”也被生成了环0中的这四个“拧劲”的“能”,但环0中的这四个“拧劲”的“能”是“麦比乌斯拧劲”的“能”2倍,新生成的1倍于“麦比乌斯拧劲”的“能”的方向与原来的“麦比乌斯拧劲”的“能”的方向相反。四、从麦比乌斯环生成为环0的过程,还使环0的空间比麦比乌斯环的空间增大了一倍。五、从环0生成环n和环n+1的过程,环0中的四个“拧劲”的“能”不会增加,但从环0的“裂变”中,每“裂变”一次会增加一个环0的空间。六、从环0生成环1和环2以及再“裂变”直至环n和环n+1后,所生成的所有的环n和环n+1都将套在一起,永远无法分开、永远也不可能与其它的环不发生联系而独立存在。附页3:奇妙的启示从麦比乌斯环的三个奇妙之处和麦比乌斯环、环0以及生成的所有的环的六个特征,我们得到奇妙的启示:一、无论将麦比乌斯环放在宇宙时空的任何地方,我们同样也会发现麦比乌斯环之外的空间也只能是存在一个面,因此,宇宙时空的任何空间之处也只存在一个面。如果宇宙时空的任何空间之处只存在一个面,那么我们就可以认为宇宙时空中的任何一点与其它的点都是相通的,即整个宇宙时空是相通的,任何一点都是宇宙的中心,也是宇宙的边缘,宇宙时空中的任何物质也都是一样,也都处于宇宙的中心,也都处于宇宙的边缘。二:宇宙时空中的任何一个点都可以通过“裂变”的方式无中生有地生成一个对立的阴阳两性。无论生成的这一个对立的阴阳两性是否需要载体呈现出来,通过“裂变”的方式,无中生有地、生成的一个对立的阴阳两性,都需要一个比原来的空间大一倍的空间,来体现这生成的、一个对立的阴阳两性。三:只要存在“裂变”就会使原来的麦比乌斯环不再以“本来面目”存在,或者说,原来的麦比乌斯环已经不存在了。从无中生有的、生成的、具有一个对立的、阴阳两性的环0“复原”成原来的麦比乌斯环,则需要化解一个对立的阴阳两性的面。四、从麦比乌斯环生成为环0的过程,还使环0具有了因相互转换而最终呈现为同一个方向上的、性质不同的四个“拧劲”。我们得知,任何一个肯定应该是一个具有同一个方向上的、有缺口的或说成是非绝对的否定之否定之否定之否定的矢量(有一定方向的否定)过程。五、从环0生成环1和环2以及再“裂变”直至环n和环n+1后,所生成的所有的环n和环n+1都将套在一起,永远无法分开、永远也不可能与其它的环不发生联系而独立存在。这说明宇宙万物之间存在普遍联系的法则,而且任何一点或一个事物都与其他所有的宇宙万物相通相连,是不可分割的、不可遗漏的。六、宇宙万物从最终起源上来讲是没有任何差异的,均起源于只有一个面的空间或者说没有任何面的状态。因此也可以说宇宙万物都是从无中生有中而来,只不过是在演变的过程中呈现出差异而已。七、在麦比乌斯环生成为环0的“裂变”过程中,无中生有的增加生成原有“拧劲”中的1倍的新的能量,也就是说在新产生的一对阴阳两性关系体的过程中的“裂变”不遵循“能量守恒原则”;而之后的所有的宇宙万物的再“裂变”只能使宇宙的时空增大,不再生成新的能量,而且在“裂变”中必然遵循“能量守恒原则”。八、宇宙时空中的任何一个点都可以通过无中生有的方式第一次生成阴阳两性,然后再分别以刚生成的阴阳两性为基础生成第一次的阴阳两性的两个物质,第二次、第三次……直至永无穷尽。麦比乌斯带的发现对于这样一个看来十分简单的问题,数百年间,曾有许多科学家进行了认真研究,结果都没有成功。后来,德国的数学家麦比乌斯对此发生了浓厚兴趣,他长时间专心思索、试验,也毫无结果。有一天,他被这个问题弄得头昏脑涨了,便到野外去散步。新鲜的空气,清凉的风,使他顿时感到轻松舒适,但他头脑里仍然只有那个尚未找到的圈儿。一片片肥大的玉米叶子,在他眼里变成了“绿色的纸条儿”,他不由自主地蹲下去,摆弄着、观察着。叶子弯曲着耸拉下来,有许多扭成半圆形的,他随便撕下一片,顺着叶子自然扭的方向对接成一个圆圈儿,他惊喜地发现,这“绿色的圆圈儿”就是他梦寐以求的那种圆圈。麦比乌斯回到办公室,裁出纸条,把纸的一端扭转180°,再将一端的正面和背面粘在一起,这样就做成了只有一个面的纸圈儿。圆圈做成后,麦比乌斯捉了一只小甲虫,放在上面让它爬。结果,小甲虫不翻越任何边界就爬遍了圆圈儿的所有部分。麦比乌斯激动地说:“公正的小甲虫,你无可辩驳地证明了这个圈儿只有一个面。”麦比乌斯圈就这样被发现了。做几个简单的实验,就会发现“麦比乌斯圈”有许多让我们感到惊奇而有趣的结果。弄好一个圈,粘好,绕一圈后可以发现,另一个面的入口被堵住了,原理就是这样啊.实验一如果在裁好的一张纸条正中间画一条线,粘成“麦比乌斯圈”,再沿线剪开,把这个圈一分为二,照理应得到两个圈儿,奇怪的是,剪开后竟是一个大圈儿。实验二如果在纸条上划两条线,把纸条三等分,再粘成“麦比乌斯圈”,用剪刀沿画线剪开,剪刀绕两个圈竟然又回到原出发点,猜一猜,剪开后的结果是什么,是一个大圈?还是三个圈儿?都不是。它究竟是什么呢?你自己动手做这个实验就知道了。你就会惊奇地发现,纸带不是一分为二,而是一大一小的相扣环。有趣的是:新得到的这个较长的纸圈,本身却是一个双侧曲面,它的两条边界自身虽不打结,但却相互套在一起。我们可以把上述纸圈,再一次沿中线剪开,这回可真的一分为二了!得到的是两条互相套着的纸圈,而原先的两条边界,则分别包含于两条纸圈之中,只是每条纸圈本身并不打结罢了。关于麦比乌斯圈的单侧性,可如下直观地了解,如果给麦比乌斯圈着色,色笔始终沿曲面移动,且不越过它的边界,最后可把麦比乌斯圈两面均涂上颜色,即区分不出何是正面,何是反面。对圆柱面则不同,在一侧着色不通过边界不可能对另一侧也着色。单侧性又称不可定向性。以曲面上除边缘外的每一点为圆心各画一个小圆,对每个小圆周指定一个方向,称为相伴麦比乌斯圈单侧曲面圆心点的指向,若能使相邻两点相伴的指向相同,则称曲面可定向,否则称为不可定向。麦比乌斯圈是不可定向的。麦比乌斯圈还有着更为奇异的特性。一些在平面上无法解决的问题,却不可思议地在麦比乌斯圈上获得了解决。比如在普通空间无法实现的“手套易位问题”:人左右两手的手套虽然极为相像,但却有着本质的不同。我们不可能把左手的手套贴切地戴到右手上去;也不能把右手的手套贴切地戴到左手上来。无论你怎么扭来转去,左手套永远是左手套,右手套也永远是右手套。不过,倘若你把它搬到麦比乌斯圈上来,那么解决起来就易如反掌了。“手套移位问题”