《材料结构与性能》习题第一章1、一25cm长的圆杆,直径2.5mm,承受的轴向拉力4500N。如直径拉细成2.4mm,问:1)设拉伸变形后,圆杆的体积维持不变,求拉伸后的长度;2)在此拉力下的真应力和真应变;3)在此拉力下的名义应力和名义应变。比较以上计算结果并讨论之。2、举一晶系,存在S14。3、求图1.27所示一均一材料试样上的A点处的应力场和应变场。4、一陶瓷含体积百分比为95%的Al2O3(E=380GPa)和5%的玻璃相(E=84GPa),计算上限及下限弹性模量。如该陶瓷含有5%的气孔,估算其上限及下限弹性模量。5、画两个曲线图,分别表示出应力弛豫与时间的关系和应变弛豫和时间的关系。并注出:t=0,t=∞以及t=τε(或τσ)时的纵坐标。6、一Al2O3晶体圆柱(图1.28),直径3mm,受轴向拉力F,如临界抗剪强度τc=130MPa,求沿图中所示之一固定滑移系统时,所需之必要的拉力值。同时计算在滑移面上的法向应力。第二章1、求融熔石英的结合强度,设估计的表面能为1.75J/m2;Si-O的平衡原子间距为1.6×10-8cm;弹性模量值从60到75GPa。2、融熔石英玻璃的性能参数为:E=73GPa;γ=1.56J/m2;理论强度。如材料中存在最大长度为的内裂,且此内裂垂直于作用力的方向,计算由此而导致的强度折减系数。3、证明材料断裂韧性的单边切口、三点弯曲梁法的计算公式:与是一回事。4、一陶瓷三点弯曲试件,在受拉面上于跨度中间有一竖向切口如图2.41所示。如果E=380GPa,μ=0.24,求KⅠc值,设极限载荷达50㎏。计算此材料的断裂表面能。5、一钢板受有长向拉应力350MPa,如在材料中有一垂直于拉应力方向的中心穿透缺陷,长8mm(=2c)。此钢材的屈服强度为1400MPa,计算塑性区尺寸r0及其与裂缝半长c的比值。讨论用此试件来求KⅠc值的可能性。6、一陶瓷零件上有以垂直于拉应力的边裂,如边裂长度为:①2mm;②0.049mm;③2μm,分别求上述三种情况下的临界应力。设此材料的断裂韧性为1.62MPa·m2。讨论诸结果。7、画出作用力与预期寿命之间的关系曲线。材料系ZTA陶瓷零件,温度在900℃,KⅠc为10MPa·m2,慢裂纹扩展指数N=40,常数A=10-40,Y取π。设保证实验应力取作用力的两倍。8、按照本章图2.28所示透明氧化铝陶瓷的强度与气孔率的关系图,求出经验公式。9、弯曲强度数据为:782,784,866,884,884,890,915,922,922,927,942,944,1012以及1023MPa。求两参数韦伯模量数和求三参数韦伯模量数。第三章1、计算室温(298K)及高温(1273K)时莫来石瓷的摩尔热容值,并请和安杜龙—伯蒂规律计算的结果比较。2、请证明固体材料的热膨胀系数不因内含均匀分散的气孔而改变。3、掺杂固溶体与两相陶瓷的热导率随体积分数而变化的规律有何不同。4、康宁1723玻璃(硅酸铝玻璃)具有下列性能参数:λ=0.021J/(cm·℃);α=4.6×10-6/℃;σp=7.0kg/mm2,E=6700kg/mm2,ν=0.25。求第一及第二热冲击断裂抵抗因子。5、一热机部件由反应烧结氮化硅制成,其热导率λ=0.184J/(cm·℃),最大厚度=120mm。如果表面热传递系数h=0.05J/(cm2·s·℃),假设形状因子S=1,估算可兹应用的热冲击最大允许温差。第四章1、一入射光以较小的入射角i和折射角r穿过一透明玻璃板。证明透过后的光强系数为(1-m)2。设玻璃对光的衰减不计。2、一透明AL2O3板厚度为1mm,用以测定光的吸收系数。如果光通过板厚之后,其强度降低了15℅,计算吸收及散射系数的总和。第五章1、无机材料绝缘电阻的测量试件的外径Φ=50mm,厚度d=2mm,电极尺寸如图5.55所示:D1=26mm,D2=38mm,D3=48mm,另一面为全电极。采用直流三端电极法进行测量。(1)请画出测量试件体电阻率和表面电阻率的接线电路图。(2)若采用500V直流电源测出试体的体电阻为250MΩ,表面电阻为50MΩ,计算该材料的体电阻率和表面电阻率。2、实验测出离子型电导体的电导率与温度的相关数据,经数学回归分析得出关系式为:TBA1lg(1)试求在测量温度范围内的电导活化能表达式。(2)若给定T1=500K,σ1=10-9(1).cmT1=1000K,σ2=10-6(1).cm计算电导活化能的值。3、本征电导体中,从价带激发至导带的电子和价带产生的空穴参与电导。激发的电子数n可近似表示为:n=Nexp(—EP/2kT)式中N为状态密度,k为波尔兹曼常数,T为绝对温度。试回答以下问题:(1)设N=1023cm-3,k=8.6×10-5eV·K-1时,Si(Eq=1.1eV),TiO2(Eq=3.0eV)在室温(20℃)和500℃时所激发的电子数(cm-3)各是多少?(2)半导体的电导率σ(Ω-1·cm-1)可表示为σ=neμ式中n为载流子速度(cm-3),e为载流子电荷(电子电荷1.6×10-19C),μ为迁移率(cm2·V-1·s-1)。当电子(e)和空穴(h)同时为载流子时,σ=neeμe+nheμh假设Si的迁移率μe=1450(cm2·V-1·s-1),μh=500(cm2·V-1·s-1),且不随温度变化。试求Si在室温20℃和在500℃时的电导率。4、根据费米—狄拉克分布函数,半导体中电子占有某一能级E的允许状态几率f(E)为:f(E)=[1+exp(E-EF)/kT]-1EF为费米能级,它是电子存在几率为1/2的能级。如图5.56所示的能带结构,本征半导体导带中的电子浓度n,价带中的空穴浓度p分别为式中:me*,mh*分别为电子和空穴的有效质量,h为普朗克常数。试回答下列问题:(1)本征半导体中n=p,利用上二式写出Ef的表达式。(2)当me*=mh*时,Ef位于能带结构的什么位置。通常me*mh*,Ef的位置随温度将如何变化。(3)令n=p=np,Eg=Ec-Ev,试求n随温度变化的函数关系(含Eg的函数)。(4)如图5.56所示,施主能级为ED,施主浓度为ND,Ef在Ec和ED之间,电离施主浓度nD为:若n=nD,试写出Ef的表达式。当T=0时,Ef位于能带结构的什么位置。(5)令n=nD=nnD,试写出n随温度变化的关系式。5、(1)根据缺陷化学原理,推导NiO电导率与氧分压的关系。(2)讨论添加AL2O3对NiO电导率的影响,并写出空穴浓度与氧分压的关系。6、(1)根据化学缺陷原理推导ZnO电导率与氧分压的关系。(2)讨论AL2O3,Li2O对ZnO电导率的影响。7、p-n结的能带结构如图5.57(a)所示,如果只考虑电子的运动,那么在热平衡状态下,p区的极少量电子由于势垒的降低而产生一定的电流(饱和电流—I0)与n区的电子由于势垒的升高Vd,靠扩散产生的电流(扩散电流Id)相抵消。Id可表示为Id=Aexp(-eVd/KT)式中A为常数,当p-n结上施加偏压V,能带结构如图5.57(b),势垒高度为(Vd-V).求:(1)此时的扩散电流I’d的表达式。(2)试证明正偏压下电子产生的静电流公式为I=I0[exp(eV/kT)-1](3)设正偏压为V1时的电流I1,那么,电压为2V1时,电流I2为多少(用含I1的函数表示)?(4)负偏压下,施加电压极大时(V→∞),I的极限值为多少?但是实际当施加电压至某一值(-VB)时,电流会突然增大,引起压降,试定性描绘p-n结在正负偏压时的V-I特性。第六章1、金红石(TiO2)的介电常数是100,求气孔率为10%的一块金红石陶瓷介质的介电常数。2、一块1cm*4cm*0.5cm的陶瓷介质,其电容为2.4-6μF,损耗因子tgδ为0.02。求:(1)相对介电常数;(2)损耗因素。3、镁橄榄石(Mg2SiO4)瓷的组成为45%SiO2,5%Al2O3和50%MgO,在1400℃烧成并急冷(保留玻璃相),陶瓷的εr=5.4。由于Mg2SiO4的介电常数是6.2,估算玻璃的介电常数εr。(设玻璃体积浓度为Mg2SiO4的1/2)。4、如果A原子的原子半径为B的两倍,那么在其它条件都是相同的情况下,原子A的电子极化率大约是B的多少倍?5、为什么碳化硅的电容光焕发率与其折射率的平方n2相等。6、从结构上解释,为什么含碱土金属的适用于介电绝缘?7、细晶粒金红石陶瓷样品在20.c,100Hz时,εr=100,这种陶瓷εr高的原因是什么?如何用实验来鉴别各种起作用的机制。8、叙述BaTiO3典型电介质中在居里点以下存在四中极化机制。9、画出典型的铁电体的电滞回线,用有关机制解释引起非线性关系的原因。10、根据压电振子的谐振特性和交流电路理论,画出压电振子的等效电路图,并计算当等效电阻为0时,各等效电路的参数(用谐振频率与反谐振频率表示)。第七章1、当正型尖晶石CdFe2O4掺入反型尖晶石如磁铁矿Fe3O4时,Cd离子仍然保持正型分布,试计算下列组成的磁矩:CdxFe3-x,当(a)x=0,(b)x=0.1,(c)X=0.52、试述下列型尖晶石结构的单位体积饱和磁矩,以玻尔磁子数表示:MgFe2O4CoFe2O4Zn0.2Mn0.8Fe2O43、导致铁磁性和亚铁磁性物质的离子结构有什么特征?4、为什么含有未满电子壳的原子组成的物质中只有一部分具有铁磁性?