pcb多层板方案

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

一、单板层的排布一般原则:元件面下面(第二层)为地平面,提供器件屏蔽层以及为顶层布线提供参考平面;所有信号层尽可能与地平面相邻;尽量避免两信号层直接相邻;主电源尽可能与其对应地相邻;兼顾层压结构对称。二、对于母板的层排布,现有母板很难控制平行长距离布线,对于板级工作频率在50MHZ以上的(50MHZ以下的情况可参照,适当放宽),建议排布原则:元件面、焊接面为完整的地平面(屏蔽);无相邻平行布线层;所有信号层尽可能与地平面相邻;关键信号与地层相邻,不跨分割区。注:具体PCB的层的设置时,要对以上原则进行灵活掌握,在领会以上原则的基础上,根据实际单板的需求,如:是否需要一关键布线层、电源、地平面的分割情况等,确定层的排布,切忌生搬硬套,或抠住一点不放。以下为单板层的排布的具体探讨:1、*四层板,优选方案1,可用方案3方案电源层数地层数信号层数12341112SGPS2122GSSP3112SPGS方案1:此方案四层PCB的主选层设置方案,在元件面下有一地平面,关键信号优选布TOP层;至于层厚设置,有以下建议:满足阻抗控制芯板(GND到POWER)不宜过厚,以降低电源、地平面的分布阻抗;保证电源平面的去藕效果;为了达到一定的屏蔽效果,有人试图把电源、地平面放在TOP、BOTTOM层,即采用方案2:此方案为了达到想要的屏蔽效果,至少存在以下缺陷:电源、地相距过远,电源平面阻抗较大;电源、地平面由于元件焊盘等影响,极不完整;由于参考面不完整,信号阻抗不连续。实际上,由于大量采用表贴器件,对于器件越来越密的情况下,本方案的电源、地几乎无法作为完整的参考平面,预期的屏蔽效果很难实现;方案2使用范围有限。但在个别单板中,方案2不失为最佳层设置方案。方案2使用案例:案例(特例):设计过程中,出现了以下情况:A、整板无电源平面,只有GND、PGND各占一个平面;B、整板走线简单,但作为接口滤波板,布线的辐射必须关注;C、该板贴片元件较少,多数为插件。分析:1、由于该板无电源平面,电源平面阻抗问题也就不存在了;2、由于贴片元件少(单面布局),若表层做平面层,内层走线,参考平面的完整性基本得到保证,而且第二层可铺铜保证少量顶层走线的参考平面;3、作为接口滤波板,PCB布线的辐射必须关注,若内层走线,表层为GND、PGND,走线得到很好的屏蔽,传输线的辐射得到控制;鉴于以上原因,在本板的层的排布时,决定采用方案2,即:GND、S1、S2、PGND,由于表层仍有少量短走线,而底层则为完整的地平面,我们在S1布线层铺铜,保证了表层走线的参考平面;五块接口滤波板中,出于以上同样的分析,设计人员决定采用方案2,同样不失为层的设置经典。方案3:此方案同方案1类似,适用于主要器件在BOTTOM布局或关键信号底层布线的情况;一般情况下,限制使用此方案;2、*六层板:方案电源地信号1234561114S1GS2S3PS42114S1S2GPS3S43123S1G1S2G2PS34123S1G1S2G2PS3优选方案3,可用方案1,备用方案2、4。对于六层板,优先考虑方案3,优选布线层S2,其次S3、S1。主电源及其对应的地布在4、5层,层厚设置时,增大S2-P之间的间距,缩小P-G2之间的间距(相应缩小G1-S2层之间的间距),以减小电源平面的阻抗,减少电源对S2的影响;在成本要求较高的时候,可采用方案1,优选布线层S1、S2,其次S3、S4,与方案1相比,方案2保证了电源、地平面相邻,减少电源阻抗,但S1、S2、S3、S4全部裸露在外,只有S2才有较好的参考平面;对于局部、少量信号要求较高的场合,方案4比方案3更适合,它能提供极佳的布线层S2。3、*八层板:优选方案2、3、可用方案1方案电源地信号123456781125S1G1S2S3PS4G2S52134S1G1S2G2PS3G3S43224S1G1S2P1G2S3P2S44224S1G1S2P1P2S3G3S45224S1G1P1S2S3G2P2S4对于单电源的情况下,方案2比方案1减少了相邻布线层,增加了主电源与对应地相邻,保证了所有信号层与地平面相邻,代价是:牺牲一布线层;对于双电源的情况,推荐采用方案3,方案3兼顾了无相邻布线层、层压结构对称、主电源与地相邻等优点,但S4应减少关键布线;方案4:无相邻布线层、层压结构对称,但电源平面阻抗较高;应适当加大3-4、5-6,缩小2-3、6-7之间层间距;方案5:与方案4相比,保证了电源、地平面相邻;但S2、S3相邻,S4以P2作参考平面;对于底层关键布线较少以及S2、S3之间的线间窜扰能控制的情况下此方案可以考虑;4、*十层板:推荐方案2、3、可用方案1、4方案3:扩大3-4与7-8各自间距,缩小5-6间距,主电源及其对应地应置于6、7层;优选布线层S2、S3、S4,其次S1、S5;本方案适合信号布线要求相差不大的场合,兼顾了性能、成本;推荐大家使用;但需注意避免S2、S3之间平行、长距离布线;方案4:EMC效果极佳,但与方案3比,牺牲一布线层;在成本要求不高、EMC指标要求较高、且必须双电源层的关键单板,建议采用此种方案;优选布线层S2、S3,对于单电源层的情况,首先考虑方案2,其次考虑方案1。方案1具有明显的成本优势,但相邻布线过多,平行长线难以控制;5、*十二层板:推荐方案2、3,可用方案1、4、备用方案5以上方案中,方案2、4具有极好的EMC性能,方案1、3具有较佳的性价比;对于14层及以上层数的单板,由于其组合情况的多样性,这里不再一一列举。大家可按照以上排布原则,根据实际情况具体分析。以上层排布作为一般原则,仅供参考,具体设计过程中大家可根据需要的电源层数、布线层数、特殊布线要求信号的数量、比例以及电源、地的分割情况,结合以上排布原则灵活掌握6、EMC问题在布板的时候还应该注意EMC的抑制哦!!这很不好把握,分布电容随时存在!!如何接地!PCB设计原本就要考虑很多的因素,不同的环境需要考虑不同的因素.地的分割与汇接接地是抑制电磁干扰、提高电子设备EMC性能的重要手段之一。正确的接地既能提高产品抑制电磁干扰的能力,又能减少产品对外的EMI发射。接地的含义电子设备的“地”通常有两种含义:一种是“大地”(安全地),另一种是“系统基准地”(信号地)。接地就是指在系统与某个电位基准面之间建立低阻的导电通路。“接大地”就是以地球的电位为基准,并以大地作为零电位,把电子设备的金属外壳、电路基准点与大地相连接。把接地平面与大地连接,往往是出于以下考虑:A、提高设备电路系统工作的稳定性;B、静电泄放;C、为*作人员提供安全保障。接地的目的A、安全考虑,即保护接地;B、为信号电压提供一个稳定的零电位参考点(信号地或系统地);C、屏蔽接地。基本的接地方式电子设备中有三种基本的接地方式:单点接地、多点接地、浮地。单点接地单点接地是整个系统中,只有一个物理点被定义为接地参考点,其他各个需要接地的点都连接到这一点上。单点接地适用于频率较低的电路中(1MHZ以下)。若系统的工作频率很高,以致工作波长与系统接地引线的长度可比拟时,单点接地方式就有问题了。当地线的长度接近于1/4波长时,它就象一根终端短路的传输线,地线的电流、电压呈驻波分布,地线变成了辐射天线,而不能起到“地”的作用。为了减少接地阻抗,避免辐射,地线的长度应小于1/20波长。在电源电路的处理上,一般可以考虑单点接地。对于大量采用的数字电路的PCB,由于其含有丰富的高次谐波,一般不建议采用单点接地方式。多点接地多点接地是指设备中各个接地点都直接接到距它最近的接地平面上,以使接地引线的长度最短。多点接地电路结构简单,接地线上可能出现的高频驻波现象显著减少,适用于工作频率较高的(10MHZ)场合。但多点接地可能会导致设备内部形成许多接地环路,从而降低设备对外界电磁场的抵御能力。在多点接地的情况下,要注意地环路问题,尤其是不同的模块、设备之间组网时。地线回路导致的电磁干扰:理想地线应是一个零电位、零阻抗的物理实体。但实际的地线本身既有电阻分量又有电抗分量,当有电流通过该地线时,就要产生电压降。地线会与其他连线(信号、电源线等)构成回路,当时变电磁场耦合到该回路时,就在地回路中产生感应电动势,并由地回路耦合到负载,构成潜在的EMI威胁。浮地浮地是指设备地线系统在电气上与大地绝缘的一种接地方式。由于浮地自身的一些弱点,不太适合一般的大系统中,其接地方式很少采用关于接地方式的一般选取原则:对于给定的设备或系统,在所关心的最高频率(对应波长为)入上,当传输线的长度L入,则视为高频电路,反之,则视为低频电路。根据经验法则,对于低于1MHZ的电路,采用单点接地较好;对于高于10MHZ,则采用多点接地为佳。对于介于两者之间的频率而言,只要最长传输线的长度L小于1/20入,则可采用单点接地以避免公共阻抗耦合。对于接地的一般选取原则如下:(1)低频电路(1MHZ),建议采用单点接地;(2)高频电路(10MHZ),建议采用多点接地;(3)高低频混合电路,混合接地。

1 / 4
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功