PET-CTPET全称为正电子发射计算机断层显像(positronemissiontomographyPET),是反映病变的基因、分子、代谢及功能状态的显像设备。它是利用正电子核素标记葡萄糖等人体代谢物作为显像剂,通过病灶对显像剂的摄取来反映其代谢变化,从而为临床提供疾病的生物代谢信息。PET采用正电子核素作为示踪剂,通过病灶部位对示踪剂的摄取了解病灶功能代谢状态,可以宏观的显示全身各脏器功能,代谢等病理生理特征,更容易发现病灶。CT可以精确定位病灶及显示病灶细微结构变化;PET/CT融合图像可以全面发现病灶,精确定位及判断病灶良恶性,故能早期,快速,准确,全面发现病灶。作用PET的独特作用是以代谢显像和定量分析为基础,应用组成人体主要元素的短命核素如11C、13N、15O、18F等正电子核素为示踪剂,不仅可快速获得多层面断层影象、三维定量结果以及三维全身扫描,而且还可以从分子水平动态观察到代谢物或药物在人体内的生理生化变化,用以研究人体生理、生化、化学递质、受体乃至基因改变。近年来,PET在诊断和指导治疗肿瘤、冠心病和脑部疾病等方面均已显示出独特的优越性。原理一、PET显像的基本原理PET是英文PositronEmissionTomography的缩写。其临床显像过程为:将发射正电子的放射性核素(如F-18等)标记到能够参与人体组织血流或代谢过程的化合物上,将标有带正电子化合物的放射性核素注射到受检者体内。让受检者在PET的有效视野范围内进行PET显像。放射核素发射出的正电子在体内移动大约1mm后与组织中的负电子结合发生湮灭辐射。产生两个能量相等(511KeV)、方向相反的γ光子。由于两个光子在体内的路径不同,到达两个探测器的时间也有一定差别,如果在规定的时间窗内(一般为0-15us),探头系统探测到两个互成180度(士0.25度)的光子时。即为一个符合事件,探测器便分别送出一个时间脉冲,脉冲处理器将脉冲变为方波,符合电路对其进行数据分类后,送人工作站进行图像重建。便得到人体各部位横断面、冠状断面和矢状断面的影像。PET系统的主要部件包括机架、环形探测器、符合电路、检查床及工作站等。探测系统是整个正电子发射显像系统中的主要部分,它采用的块状探测结构有利于消除散射、提高计数率。许多块结构组成一个环,再由数十个环构成整个探测器。每个块结构由大约36个锗酸铋(BGO)小晶体组成,晶体之后又带有2对(4个)光电倍增管(PMT)(请看图1)。BGO晶体将高能光子转换为可见光.PMT将光信号转换成电信号,电信号再被转换成时间脉冲信号,探头层间符合线路对每个探头信号的时间耦合性进行检验判定,排除其它来源射线的干扰,经运算给出正电子的位置,计算机采用散射、偶然符合信号校正及光子飞行时间计算等技术,完成图像重建。重建后的图像将PET的整体分辨率提高到2mm左右。PET采用符合探测技术进行电子准直校正,大大减少了随机符合事件和本底,电子准直器具有非常高的灵敏度(没有铅屏蔽的影响)和分辨率。另外.BGO晶体的大小与灵敏度成正相关性。块状结构的PET探头。能进行2D或3D采集。2D采集是在环与环之间隔置铅板或钨板,以减少散射对图像质量的影响2D图像重建时只对临近几个环(一般2-3个环)内的计数进行符合计算,其分辨率高,计数率低;3D数据采集则不同。取消了环与环之间的间隔,在所有环内进行符合计算,明显地提高了计数率,但散射严重,图像分辨率也较低,且数据重组时要进行大量的数据运算。两种采集方法的另一个重要区别是灵敏度不同,3D采集的灵敏度在视野中心为最高。二、多层螺旋CT的工作原理CT的基本原理是图像重建,根据人体各种组织(包括正常和异常组织)对X射线吸收不等这一特性,将人体某一选定层面分成许多立方体小块(也称体素)X射线穿过体素后,测得的密度或灰度值称为象素。X射线束穿过选定层面,探测器接收到沿X射线束方向排列的各体素吸收X射线后衰减值的总和,为已知值,形成该总量的各体素X射线衰减值为未知值,当X射线发生源和探测器围绕人体做圆弧或圆周相对运动时。用迭代方法求出每一体素的X射线衰减值并进行图像重建,得到该层面不同密度组织的黑白图像。螺旋CT突破了传统CT的设计,采用滑环技术,将电源电缆和一些信号线与固定机架内不同金属环相连运动的X射线管和探测器滑动电刷与金属环导联。球管和探测器不受电缆长度限制,沿人体长轴连续匀速旋转,扫描床同步匀速递进(传统CT扫描床在扫描时静止不动),扫描轨迹呈螺旋状前进,可快速、不间断地完成容积扫描。多层螺旋CT的特点是探测器多层排列。是高速度、高空间分辨率的最佳结合。多层螺旋CT的宽探测器采用高效固体稀土陶瓷材料制成。每个单元只有0.5、1或1.25mm厚,最多也只有5mm厚薄层扫描探测器的光电转换效率高达99%能连续接收X射线信号。余辉极短,且稳定性好。多层螺旋CT能高速完成较大范围的容积扫描,图像质量好,成像速度快,具有很高的纵向分辨率和很好的时间分辨率。大大拓宽了CT的应用范围,与单层螺旋CT相比。采集同样体积的数据,扫描时间大为缩短,在不增加X射线剂量的情况下,每15S左右就能扫描一个部位;5S内可完成层厚为3mm的整个胸部扫描;采用较大的螺距P值,一次屏气20S,可以完成体部扫描;同样层厚,同样时间内,扫描范围增大4倍。扫描的单位时间覆盖率明显提高,病人接受的射线剂量明显减少,x线球管的使用寿命明显延长,同时,节省了对比剂用量,提高了低对比分辨率和空间分辨率,明显减少了噪声、伪影及硬化效应。另外,还可根据不同层厚需要自动调节X射线锥形线束的宽度,经过准直的X射线束聚焦在相应数目的探测器上探测器通过电子开关与四个数据采集系统(DAS)相连。每个DAS能独立采集完成一套图像,按照DAS与探测器匹配方式不同。通过电子切换可以选择性地获得1层、2层或4层图像,每层厚度可自由选择(0.5、1.0、1.25mm或5、10mm。采集的数据既可做常规图像显示,也可在工作站进行后处理,完成三维立体重建、多层面重建、器官表面重建等,并能实时或近于实时显示。另外.不同角度的旋转、不同颜色的标记,使图像更具立体感更直观、逼真。仿真内窥镜、三维CT血管造影技术也更加成熟和快捷。三、PET-CT的图像融合PET与CT两种不同成像原理的设备同机组合,不是其功能的简单相加。而是在此基础上进行图像融合,融合后的图像既有精细的解剖结构又有丰富的生理.生化功能信息能为确定和查找肿瘤及其它病灶的精确位置定量、定性诊断提供依据。并可用X线对核医学图像进行衰减校正。PET-CT的核心是融合,图像融合是指将相同或不同成像方式的图像经过一定的变换处理使它们的空间位置和空间坐标达到匹配,图像融台处理系统利用各自成像方式的特点对两种图像进行空间配准与结合,将影像数据注册后合成为一个单一的影像。PET-CT同机融合(又叫硬件融合、非影像对位)具有相同的定位坐标系统,病人扫描时不必改变位置,即可进行PET-CT同机采集,避免了由于病人移位所造成的误差。采集后两种图像不必进行对位、转换及配准,计算机图像融合软件便可方便地进行2D、3D的精确融合,融合后的图像同时显示出人体解剖结构和器官的代谢活动,大大简化了整个图像融合过程中的技术难度、避免了复杂的标记方法和采集后的大量运算,并在一定程度上解决了时间、空间的配准问题,图像可靠性大大提高。PET在成像过程中由于受康普顿效应、散射、偶然符合事件、死时间等衰减因素的影响,采集的数据与实际情况并不一致,图像质量失真,必须采用有效措施进行校正,才能得到更真实的医学影像。同位素校正得到的穿透图像系统分辨率一般为12mm、而X线方法的穿透图像系统分辨率为1mm左右图像信息量远大于同位素方法。用CT图像对PET进行衰减校正使PET图像的清晰度大为提高,图像质量明显优于同位素穿透源校正的效果(请看图2),分辨率提高了25%以上,校正效率提高了30%,且易于操作。校正后的PET图像与CT图像进行融合,经信息互补后得到更多的解剖结构和生理功能关系的信息对于肿瘤病人手术和放射治疗定位具有极其重要的临床意义。特点PET/CT则是将PET和CT(计算机体层显像)有机结合在一起,使用同一个检查床和同一个图像处理工作站,将PET图像和CT图像融合,可以同时放映病灶的病理生理变化和形态结构,明显提高诊断的准确性。一、PET-CT能对肿瘤进行早期诊断和鉴别诊断,鉴别肿瘤有无复发,对肿瘤进行分期和再分期,寻找肿瘤原发和转移灶,指导和确定肿瘤的治疗方案、评价疗效。在肿瘤患者中,经PET-CT检查,有相当数量的患者因明确诊断,而改变了治疗方案;PET-CT能准确评价疗效,及时调整治疗方案,避免无效治疗。总体上大大节省医疗费用,争取了宝贵的治疗时间。二、PET-CT能对癫痫灶准确定位,也是诊断抑郁症、帕金森氏病、老年性痴呆等疾病的独特检查方法。癫痫的治疗是世界十大医疗难题之一,难就难在致痫灶的准确定位,PET-CT使这一医学难题迎刃而解。经PET-CT的引导,采用X-刀或γ-刀治疗,收到很好的治疗效果。三、PET-CT也是健康查体的手段,它能一次显像完成全身检测,可早期发现严重危害人们身体健康的肿瘤及心、脑疾病,达到有病早治无病预防的目的。四、PET-CT也能进行很好的疗效评估:手术、放疗、化疗等某种治疗后,通过petct检查可以确定肿瘤是否有变化、癌细胞的活跃性是否降低、全身其他部位还有没有扩展,可以判断出之前的治疗效果。[1]现代医学认为,绝大多数疾病是体内生化过程失调的结果,PET-CT可在生理状态下动态地定量观察体内分子水平的生化变化。随着人类基因的解密,对危害人类健康的肿瘤及心、脑疾病和各种遗传性疾病的产生、发展和治疗后转归,将从根本上得到认识,也可望从根本上找到有效的治疗方案。PET-CT基因显像是连接临床与基础基因研究的“桥梁”。临床应用PET-CT提供的预测和治疗处理信息比单独PET和CT多得多,它超越了单独PET和单独CT的现有领域,既能完成超高档CT的所有功能,又能完成PET的功能——20min能完成全身CT扫描,比单纯PET的效率提高了60%以上,还能提供比CT更为准确、快速的心肌和脑血流灌注功能图像。PET-CT融合图像能很好地描述疾病对生物化学过程的作用,鉴别生理和病理性摄取,能在疾病得到解剖证据前检测出早期发病征兆,甚至能探测到小于2mm的亚临床型的肿瘤,为临床正确确定放疗的计划靶区(临床靶区与生物靶区相结合)、检测治疗过程中药物和放疗效果提供最佳的治疗方案和筛选最有效治疗药物。解剖定位加功能显像对于病变部位。具体应用1.癫痫定位:对脑癫痫病灶准确定位,为外科手术或伽玛刀切除癫痫病灶提供依据;2.脑肿瘤定性和复发判断:脑肿瘤的良恶性定性、恶性胶质瘤边界的确定、肿瘤治疗后放射性坏死与复发的鉴别、肿瘤活检部位的选择等。3.痴呆早期诊断:早老性痴呆的早期诊断、分期并与其他类型痴呆如血管性痴呆进行鉴别。4.脑受体研究:帕金森病的脑受体分析,进行疾病的诊断和指导治疗。5.脑血管疾病:PET-CT可以敏感地捕捉到脑缺血发作引起的脑代谢变化,因此可以对一过性脑缺血发作(TIA)和脑梗死进行早期诊断和定位,并进行疗效评估和预后判断。6.药物研究:进行神经精神药物的药理学评价和指导用药,观察强迫症等患者脑葡萄糖代谢的变化情况,为立体定向手术治疗提供术前的依据和术后疗效随访等。7.高级健康体检:早期肿瘤是可以得到治愈的,但大部分肿瘤发现时已经是中晚期了,故肿瘤的常规筛查不可忽视,PET-CT简便,安全,全面,准确,是人群健康体检的最佳手段。[1]8、肺癌检查:70%肺癌确诊时已到中晚期,中晚期肺癌过了最佳治疗期,能够在早期发现肺癌病灶的最先进的影像学仪器显然是PETCT。PET-CT的超高灵感度,使得探测人体神经系统微量功能代谢变成可能,不仅提高了病灶的清晰度和特异性,更大大提高了微小病灶的检出能力和确诊率,使定位更加准确。[1]PET-CT优势PET采用正电子核素作为示踪剂,通过病灶部位对示踪剂的摄取了解病灶功能代谢状态,可以宏观的显示全身各