PID调节方法PID是由比例、微分、积分三个部分组成的,在实际应用中经常只使用其中的一项或者两项,如P、PI、PD、PID等。就可以达到控制要求.PLC编程指令里都会有PID这个功能指令.至于P,I,D数值的确定要在现场的多次调试确定.比例控制(P):比例控制是最常用的控制手段之一,比方说我们控制一个加热器的恒温100度,当开始加热时,离目标温度相差比较远,这时我们通常会加大加热,使温度快速上升,当温度超过100度时,我们则关闭输出,通常我们会使用这样一个函数e(t)=SP–y(t);u(t)=e(t)*PSP——设定值e(t)——误差值y(t)——反馈值u(t)——输出值P——比例系数滞后性不是很大的控制对象使用比例控制方式就可以满足控制要求,但很多被控对象中因为有滞后性。也就是如果设定温度是200度,当采用比例方式控制时,如果P选择比较大,则会出现当温度达到200度输出为0后,温度仍然会止不住的向上爬升,比方说升至230度,当温度超过200度太多后又开始回落,尽管这时输出开始出力加热,但温度仍然会向下跌落一定的温度才会止跌回升,比方说降至170度,最后整个系统会稳定在一定的范围内进行振荡。如果这个振荡的幅度是允许的比方说家用电器的控制,那则可以选用比例控制.比例积分控制(PI):积分的存在是针对比例控制,要不就是有差值,要不就是振荡的这种特点提出的改进,它常与比例一块进行控制,也就是PI控制。其公式有很多种,但大多差别不大,标准公式如下:u(t)=Kp*e(t)+Ki∑e(t)+u0u(t)——输出Kp——比例放大系数Ki——积分放大系数e(t)——误差u0——控制量基准值(基础偏差)大家可以看到积分项是一个历史误差的累积值,如果光用比例控制时,我们知道要不就是达不到设定值要不就是振荡,在使用了积分项后就可以解决达不到设定值的静态误差问题,比方说一个控制中使用了PI控制后,如果存在静态误差,输出始终达不到设定值,这时积分项的误差累积值会越来越大,这个累积值乘上Ki后会在输出的比重中越占越多,使输出u(t)越来越大,最终达到消除静态误差的目的。PI两个结合使用的情况下,我们的调整方式如下:1、先将I值设为0,将P值放至比较大,当出现稳定振荡时,我们再减小P值直到P值不振荡或者振荡很小为止(术语叫临界振荡状态),在有些情况下,我们还可以在这些P值的基础上再加大一点。2、加大I值,直到输出达到设定值为止。3、等系统冷却后,再重上电,看看系统的超调是否过大,加热速度是否太慢。通过上面的这个调试过程,我们可以看到P值主要可以用来调整系统的响应速度,但太大会增大超调量和稳定时间;而I值主要用来减小静态误差。PID控制:因为PI系统中的I的存在会使整个控制系统的响应速度受到影响,为了解决这个问题,我们在控制中增加了D微分项,微分项主要用来解决系统的响应速度问题,其完整的公式如下:u(t)=Kp*e(t)+Ki∑e(t)+Kd[e(t)–e(t-1)]+u0在PID的调试过程中,我们应注意以下步骤:1、关闭I和D,也就是设为0.加大P,使其产生振荡;2、减小P,找到临界振荡点;3、加大I,使其达到目标值;4、重新上电看超调、振荡和稳定时间是否吻合要求;5、针对超调和振荡的情况适当的增加一些微分项;6、注意所有调试均应在最大负载的情况下调试,这样才能保证调试完的结果可以在全工作范围内均有效;