TCP协议概述一.TCP协议简介在因特网协议族(Internetprotocolsuite)四层协议中,TCP层是位于IP层之上,应用层之下的传输层。不同主机的应用层之间经常需要可靠的、像管道一样的连接,但是IP层不提供这样的流机制,而是提供不可靠的包交换。应用层向TCP层发送用于网间传输的、用8位字节表示的数据流,然后TCP把数据流分割成适当长度的报文段(通常受该计算机连接的网络的数据链路层的最大传送单元(MTU)的限制)。之后TCP把结果包传给IP层,由它来通过网络将包传送给接收端实体的TCP层。TCP为了保证不发生丢包,就给每个字节一个序号,同时序号也保证了传送到接收端实体的包的按序接收。然后接收端实体对已成功收到的字节发回一个相应的确认(ACK);如果发送端实体在合理的往返时延(RTT)内未收到确认,那么对应的数据(假设丢失了)将会被重传。TCP用一个校验和函数来检验数据是否有错误;在发送和接收时都要计算和校验。首先,TCP建立连接之后,通信双方都同时可以进行数据的传输,其次,它是全双工的;在保证可靠性上,采用超时重传和捎带确认机制。在流量控制上,采用滑动窗口协议,协议中规定,对于窗口内未经确认的分组需要重传。在拥塞控制上,采用广受好评的TCP拥塞控制算法(也称AIMD算法),该算法主要包括三个主要部分:1,加性增、乘性减;2,慢启动;3,对超时事件做出反应。二.服务流程TCP协议提供的是可靠的、面向连接的传输控制协议,即在传输数据前要先建立逻辑连接,然后再传输数据,最后释放连接3个过程。TCP提供端到端、全双工通信;采用字节流方式,如果字节流太长,将其分段;提供紧急数据传送功能。尽管TCP和UDP都使用相同的网络层(IP),TCP却向应用层提供与UDP完全不同的服务。TCP提供一种面向连接的、可靠的字节流服务。面向连接意味着两个使用TCP的应用(通常是一个客户和一个服务器)在彼此交换数据之前必须先建立一个TCP连接。这一过程与打电话很相似,先拨号振铃,等待对方摘机说“喂”,然后才说明是谁。在一个TCP连接中,仅有两方进行彼此通信。广播和多播不能用于TCP。TCP通过下列方式来提供可靠性:1.应用数据被分割成TCP认为最适合发送的数据块。这和UDP完全不同,应用程序产生的数据报长度将保持不变。由TCP传递给IP的信息单位称为报文段或段(segment)TCP如何确定报文段的长度。2.当TCP发出一个段后,它启动一个定时器,等待目的端确认收到这个报文段。如果不能及时收到一个确认,将重发这个报文段。当TCP收到发自TCP连接另一端的数据,它将发送一个确认。这个确认不是立即发送,通常将推迟几分之一秒3.TCP将保持它首部和数据的检验和。这是一个端到端的检验和,目的是检测数据在传输过程中的任何变化。如果收到段的检验和有差错,TCP将丢弃这个报文段和不确认收到此报文段(希望发端超时并重发)。4.既然TCP报文段作为IP数据报来传输,而IP数据报的到达可能会失序,因此TCP报文段的到达也可能会失序。如果必要,TCP将对收到的数据进行重新排序,将收到的数据以正确的顺序交给应用层。5.既然IP数据报会发生重复,TCP的接收端必须丢弃重复的数据。6.TCP还能提供流量控制。TCP连接的每一方都有固定大小的缓冲空间。TCP的接收端只允许另一端发送接收端缓冲区所能接纳的数据。这将防止较快主机致使较慢主机的缓冲区溢出。两个应用程序通过TCP连接交换8bit字节构成的字节流。TCP不在字节流中插入记录标识符。我们将这称为字节流服务(bytestreamservice)。如果一方的应用程序先传10字节,又传20字节,再传50字节,连接的另一方将无法了解发方每次发送了多少字节。收方可以分4次接收这80个字节,每次接收20字节。一端将字节流放到TCP连接上,同样的字节流将出现在TCP连接的另一端。另外,TCP对字节流的内容不作任何解释。TCP不知道传输的数据字节流是二进制数据,还是ASCⅡ字符、EBCDIC字符或者其他类型数据。对字节流的解释由TCP连接双方的应用层解释。这种对字节流的处理方式与Unix操作系统对文件的处理方式很相似。Unix的内核对一个应用读或写的内容不作任何解释,而是交给应用程序处理。对Unix的内核来说,它无法区分一个二进制文件与一个文本文件。TCP是因特网中的传输层协议,使用三次握手协议建立连接。当主动方发出SYN连接请求后,等待对方回答SYN,ACK。这种建立连接的方法可以防止产生错误的连接,TCP使用的流量控制协议是可变大小的滑动窗口协议。第一次握手:建立连接时,客户端发送SYN包(SEQ=x)到服务器,并进入SYN_SEND状态,等待服务器确认。第二次握手:服务器收到SYN包,必须确认客户的SYN(ACK=x+1),同时自己也送一个SYN包(SEQ=y),即SYN+ACK包,此时服务器进入SYN_RECV状态。第三次握手:客户端收到服务器的SYN+ACK包,向服务器发送确认包ACK(ACK=y+1),此包发送完毕,客户端和服务器进入Established状态,完成三次握手。三.重传TCP协议用于控制数据段是否需要重传的依据是设立重发定时器。在发送一个数据段的同时启动一个重发定时器,如果在定时器超时前收到确认(Acknowlegement)就关闭该定时器,如果定时器超时前没有收到确认,则重传该数据段。在选择重发时间的过程中,TCP必须具有自适应性。它需要根据互联网当时的通信情况,给出合适的数据重发。这种重传策略的关键是对定时器初值的设定。目前采用较多的算法是Jacobson于1988年提出的一种不断调整超时时间间隔的动态算法。其工作原理是:对每条连接TCP都保持一个变量RTT(RoundTripTime),用于存放当前到目的端往返所需要时间最接近的估计值。当发送一个数据段时,同时启动连接的定时器,如果在定时器超时前确认到达,则记录所需要的时间(M),并修正RTT的值,如果定时器超时前没有收到确认,则将RTT的值增加1倍。通过测量一系列的RTT(往返时间)值,TCP协议可以估算数据包重发前需要等待的时间。在估计该连接所需的当前延迟时通常利用一些统计学的原理和算法(如Karn算法),从而得到TCP重发之前需要等待的时间值。四.端口号TCP段结构中端口地址都是16比特,可以有在0~65535范围内的端口号。对于这65536个端口号有以下的使用规定:1.端口号小于256的定义为常用端口,服务器一般都是通过常用端口号来识别的。任何TCP/IP实现所提供的服务都用1~1023之间的端口号,是由IANA来管理的;2.客户端只需保证该端口号在本机上是惟一的就可以了。客户端口号因存在时间很短暂又称临时端口号;3.大多数TCP/IP实现给临时端口号分配1024~5000之间的端口号。大于5000的端口号是为其他服务器预留的。五.Tcp首部Tcp数据被封装在一个ip数据报中Tcp首部tcp报文段数据部分Ip首部ip数据报的数据部分(1)若不计选项字段,TCP的首部占20个字节。(2)源端口号以及目的端口号用于寻找发端和接收端的进程,一般来讲,通过端口号和IP地址,可以唯一确定一个TCP连接,在网络编程中,通常被称为一个socket接口。(3)序号是用来标识从TCP发端向TCP接收端发送的数据字节流。(4)确认序号包含发送确认的一端所期望收到的下一个序号,因此,确认序号应该是上次已经成功收到数据字节序号加1.(5)首部长度指出了TCP首部的长度值,若不存在选项,则这个值为20字节。(6)标志位(flag):URG:紧急指针有效ACK:确认序号有效PSH:接收方应尽快将这个报文段交给应用层RST:重建连接源端口目的端口序号确认号数据偏移保留urgackpshrstsynfin窗口检验和紧急指针选项(长度可变)填充SYN:同步序号用来发起一个连接FIN:发端完成发送任务(主动关闭)六.TCP协议和UDP协议的区别1,TCP协议面向连接,UDP协议面向非连接2,TCP协议传输速度慢,UDP协议传输速度快3,TCP协议保证数据顺序,UDP协议不保证4,TCP协议保证数据正确性,UDP协议可能丢包5,TCP协议对系统资源要求多,UDP协议要求少TCP=TransmissionControlProtocol传输控制协议七.滑动窗口——接收端在讲解滑动窗口协议之前,可以回顾下最初人们为了在接收端实施流量控制所提出了的经典算法——停止等待算法,其核心思想是:接收端在收到一个数据报之后,停止接收新的数据报,直到发出ACK(对收到的数据报的确认)之后进行恢复。算法思想以及实现非常简单,但是却遇到一个效率的问题,特别是随着网络设备的数据处理能力得到了很大的提高,效率低下显得尤其明显,后来人们也尝试了多种改进措施,如本节的滑动窗口就是其中之一。其基本原理是:在接收端存在一个接收缓存区,用来接收来自于发送方的数据,只有当应用进程从接收缓存区中取出数据(可能只是部分)并发出其ACK后,才算作这部分数据已经接收,然后调节此时的滑动窗口大小。发送方根据返回的窗口大小,计算出所能发送的数据大小。因此,可以这么理解,滑动窗口算法是接收端作为主动方根据自身的缓存以及处理能力主动去调节对方的发送流量的一种调节算法。发送窗口2348910已发送不允许发送并确认期望收到八.抓包分析访问百度567