淮海工学院课程设计报告书课程名称:通信系统的计算机仿真设计题目:QPSK通信系统性能分析与MATLAB仿真学院:电子工程学院学期:2013-2014-2专业班级:姓名:学号:评语:成绩:签名:日期:课程设计报告书专用纸第1页共18页QPSK通信系统性能分析与MATLAB仿真1绪论1.1研究背景与研究意义数字信号传输系统分为基带传输系统和频带传输系统,频带传输系统也叫数字调制系统,该系统对基带信号进行调制,使其频谱搬移到适合在信道(一般为带通信道)上传输的频带上。数字调制和模拟调制一样都是正弦波调制,即被调制信号都为高频正弦波。数字调制信号又称为键控信号,数字调制过程中处理的是数字信号,而载波有振幅、频率和相位3个变量,且二进制的信号只有高低电平两个逻辑量即1和0,所以调制的过程可用键控的方法由基带信号对载频信号的振幅、频率及相位进行调制,最基本的方法有3种:正交幅度调制(QAM)、频移键控(FSK)、相移键控(PSK)。根据所处理的基带信号的进制不同分为二进制和多进制调制(M进制)。本实验采用QPSK。QPSK是英文QuadraturePhaseShiftKeying的缩略语简称,意为正交相移键控,是一种数字调制方式。在19世纪80年代初期人们选用恒定包络数字调制。这类数字调制技术的优点是已调信号具有相对窄的功率谱和对放大设备没有线性要求不足之处是其频谱利用率低于线性调制技术。19世纪80年代中期以后四相绝对移相键控(QPSK)技术以其抗干扰性能强、误码性能好、频谱利用率高等优点广泛应用于数字微波通信系统、数字卫星通信系统、宽带接入、移动通信及有线电视系统之中。1.2课程设计的目的和任务目的在于使学生在课程设计过程中能够理论联系实际,在实践中充分利用所学理论知识分析和研究设计过程中出现的各类技术问题,巩固和扩大所学知识面,为以后走向工作岗位进行设计打下一定的基础。课程设计的任务是:(1)掌握一般通信系统设计的过程,步骤,要求,工作内容及设计方法,掌握用计算机仿真通信系统的方法。(2)训练学生网络设计能力。(3)训练学生综合运用专业知识的能力,提高学生进行通信工程设计的能力。1.3可行性分析QPSK是英文QuadraturePhaseShiftKeying的缩略语简称,意为正交相移键控,是一种数字调制方式。在19世纪80年代初期,人们选用恒定包络数字调制。这类数字调制技术的优点是已调信号具有相对窄的功率谱和对放大设备没有线性要求,不足之处是其频谱利用率低于线性调制技术。19世纪80年代中期以后,课程设计报告书专用纸第2页共18页四相绝对移相键控(QPSK)技术以其抗干扰性能强、误码性能好、频谱利用率高等优点,广泛应用于数字微波通信系统、数字卫星通信系统、宽带接入、移动通信及有线电视系统之中。QPSK分为绝对相移和相对相移两种。由于绝对相移方式存在相位模糊问题,所以在实际中主要采用相对移相方式QDPSK。它具有一系列独特的优点,目前已经广泛应用于无线通信中,成为现代通信中一种十分重要的调制解调方式。其也是目前最常用的一种卫星数字信号调制方式,它具有较高的频谱利用率、较强的抗干扰性、在电路上实现也较为简单。2QPSK通信系统正交相移键控(QuadraturePhaseShiftKeying:QPSK)通信系统已经广泛应用于无线通信中,成为现代通信中一种十分重要的调制解调方式。要求利用Matlab语言对QPSK通信系统进行仿真,验证QPSK的特性(如误码率随信噪比的增加而减小)。2.1基于MATLAB的QPSK通信系统的基本模型QPSK通信系统的基本模型图如图1所示。图1QPSK通信系统的基本模型图2.2QPSK通信系统的性能指标2.2.1有效性指标(1)码元传输速率RB码元传输速率通常又称为码元速率,传码率,码率,信号速率或波形速率,直单位时间内传输码元的数目,单位为波特,常用B表示(2)信息传输速率Rb信息传输速率简称信息速率,又称比特率,表示单位时间内传送的比特数,单位为bit/s(3)频带利用率信号源抽样器量化器性能分析信道解码解调通道调制信道编码编码器噪声课程设计报告书专用纸第3页共18页频带利用率指的是传输效率问题,定义为:单位频带内码元传输速率的大小即=Rb/B(B/Hz)用信息速率形式表示为=Rb/B(b/(s.Hz))2.2.2可靠性指标(1)码元差错率Pe码元差错率简称误码率,指接受错误的码元数在传送码元数中所占的比例。准确的说,误码率就是码元在传输系统中被传错的概率,表示为:Pe=单位时间内接收的错误码元数/单位时间内系统传输的总码元数(2)信息差错率Pb信息差错率称误信率或误比特率,指接收错误的信息量在传送信息总量所占比例。表示为:Pb=单位时间内接受的错误比特数(错误信息量)/单位时间内系统传输的总比特数(总信息量)结论:一定范围内,随着信噪比逐渐变大,其误码率逐渐减小。3QPSK通信系统的主要模块3.1信源/信宿及其编译码13折线近似的PCM编码器测试模型图如图2所示。图2PCM编码主要过程是将话音、图像等模拟信号每隔一定时间进行取样,使其离散化,同时将抽样值按分层单位四舍五入取整量化,同时将抽样值按一组二进制码来表示抽样脉冲的幅值。PCM的解码主要是将数字信号转换成模拟信号。13折线近似的PCM解码器测试模型图如图3所示。课程设计报告书专用纸第4页共18页图3PCM解码器测试模型图3.2QPSK调制/解调我们将信息直接转换得到的较低频率的原始信号称为基带信号。通常基带信号不宜直接在信道中传输。因此在通信系统的发送端需将基带信号的频谱搬移(调制)到适合信道传输的频率范围内,而在接收端,再将它们搬移(解调)到原来的频率范围,这就是调制和解调。图4QPSK调制与解调图3.3信道信道(informationchannels)是信号的传输媒质,可分为有线信道和无线信道两类。有线信道包括明线、对称电缆、同轴电缆及光缆等。无线信道有地波传播、短波电离层反射、超短波或微波视距中继、人造卫星中继以及各种散射信道等。如果我们把信道的范围扩大,它还可以包括有关的变换装置,比如:发送设备、接收设备、馈线与天线、调制器、解调器等,我们称这种扩大的信道为广义信道,课程设计报告书专用纸第5页共18页而称前者为狭义信道。3.4信道编码及译码3.4.1编码原理为了与信道的统计特性相匹配,并区分通路和提高通信的可靠性,而在信源编码的基础上,按一定规律加入一些新的监督码元,以实现纠错的编码。实质是在信息码中增加一定数量的多余码元(称为监督码元),使它们满足一定的约束关系,这样,由信息码元和监督码元共同组成一个由信道传输的码字。一旦传输过程中发生错误,则信息码元和监督码元间的约束关系被破坏。在接收端按照既定的规则校验这种约束关系,从而达到发现和纠正错误的目的。3.4.2RS编码介绍卷积码编码器参数设置表如表3-1所示,RS码编码器模块及其参数设置表3-2所示。表3-1卷积码编码器参数设置表表3-2RS码编码器模块及其参数设置表RS码又称里所码,即Reed-solomoncodes,是一种低速率的前向纠错的信道编码,对由校正过采样数据所产生的多项式有效。编码过程首先在多个点上对这些多项式求冗余,然后将其传输或者存储。对多项式的这种超出必要值的采样使得多项式超定(过限定)。当接收器正确的收到足够的点后,它就可以恢复原来的多项式,即使接收到的多项式上有很多点被噪声干扰失真。RS(Reed-Solomon)码是一类纠错能力很强的特殊的非二进制BCH码。对于任选正整数S可构造一个相应的码长为n=qS-1的q进制BCH码,而q作为某个素数的幂。当S=1,q2时所建立的码长n=q-1的q进制BCH码,称它为RS码。当q=2m(m1),其码元符号取自于F(2m)的二进制RS码可用来纠正突发差错,它是最常用的RS码。RS码为(204,188,t=8),其中t是可抗长度字节数,对应的188符号,监督段为16字节(开销字节段)。实际中实施(255,239,t=8)的RS编码,即在204字节(包括同步字节)前添加51个全“0”字节,产生RS码后丢弃前面51个空字节,形成截短的(204,188)RS码。RS的编码效率是:188/204。Trellisstructurepoly2trellis(9,[753561])ResetNoneCodewordlengthN8MessagelengthK2Primitivepolynomial[1011]Generatorpolynomialrsgenpoly(7,3)课程设计报告书专用纸第6页共18页图5RS码模块图因为本系统中采用(2,1,9)卷积码,即每输入一个比特,将输出2个比特,约束长度为9,因此本系统中,信源设置成基于采样的二进制序列。卷积码编码器格型结构Trellisstructure设置成poly2trellis(9,[753561]),其中9是约束长度,[753561]是生成多项式的八进制表示方式,转换成二进制为[111101011101110001],代表了卷积码编码器反馈连线的有无。操作模式Operationmode设置成Continuous,即卷积码编码器在整个仿真过程中都不对寄存器复位。另外三种操作模式分别为:每帧数据开始之前自动对寄存器复位;每帧输入信号的末尾增加填充比特;通过输入端口复位.接收端用维特比译码器进行译码,译码器的参数设置与编码器相对应,判决方式采用硬判决,反馈深度可设为72。3.4.3卷积码介绍因为本系统中采用(2,1,9)卷积码,即每输入一个比特,将输出2个比特,约束长度为9,因此本系统中,信源设置成基于采样的二进制序列。卷积码编码器格型结构Trellisstructure设置成poly2trellis(9,[753561]),其中9是约束长度,[753561]是生成多项式的八进制表示方式,转换成二进制为[111101011101110001],代表了卷积码编码器反馈连线的有无。操作模式Operationmode设置成Continuous,即卷积码编码器在整个仿真过程中都不对寄存器复位。另外三种操作模式分别为:每帧数据开始之前自动对寄存器复位;课程设计报告书专用纸第7页共18页每帧输入信号的末尾增加填充比特;通过输入端口复位.接收端用维特比译码器进行译码,译码器的参数设置与编码器相对应,判决方式采用硬判决,反馈深度可设为72。图6卷积码模块图3.4.4汉明码介绍汉明码是一种线性分组码,一般来说,若码长为n,信息位数为k,则监督位数为r=n-k。如果希望用r个监督位构造出r个监督关系式来指示一位错码的n种可能位置,则要求2的r次方减去1大于等于n或者2的r次方大于等于k+r+1。汉明码模块的参数可以改变,但必须要满足上述关系式。图7汉明码模块图信道编码之汉明码参数设置为:CodewordlengthN:7,MessagelengthK:Gfprimfd(3,‘min’)。课程设计报告书专用纸第8页共18页3.5串并/并串转换由于经过PCM编码出来的是8位的并行码,QPSK调制要求其必须进行并串转换。QPSK解调后的串行码也必须经过串并转换才能进行PCM译码。并串/串并转换使用Buffer实现,并串转换图如图3.6所示;串并转换图如图3.7所示。图8并串转换图图9串并转换图3.6性能分析3.6.1眼图眼图是在数字通信的工程实践中测试数字传输信道质量的一种应用广泛、简单易行的方法。实际上它是一个扫描周期是数字码元宽度的一至二倍并且与之同步的示波器。对于二进制码元,显然1和0的区别越大,接受判决时错判的可能性就越小。由于传输过程中的频带限制,噪声的叠加使得1和0的差别变小。在接收机的判决点,将1和0的差别用眼图上“眼睛”张开的大小表示,十分形象、直观和实用。从“眼图”上可以观察出码间串扰和噪声的影响,从而估计系统优劣程度。另外也可以用此图形对接收滤波器的特性加以调整,以减小码间串扰和改善系统的传输性能。3.6.2星座图星座图可以在信号空间展示信号所处的位置,为系统的传