SPSS课程学习感悟(交)

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

SPSS学习总结与反思财管1321330443233王天茜在这学期以前我并没有学过统计学,甚至没有接触过它,因此对它的认识可谓是从零开始的,但经过这一段的学习,也算是受益良多,下面我就简单说下感想吧。第一节课老师简单讲述了下这门课的概况,当时只觉得毫无头绪,对于没接触过的事物人总有莫名的恐惧,这门课看似还很难,就比较担忧。接着说说学习过后对SPSS的整体认识吧,我专门去百度了下它的全称,定义为SPSS是“社会科学统计软件包”(StatisticalPackagefortheSocialScience)的简称,是一种集成化的计算机数据处理应用软件。之前看论文的时候会经常看到各种表格图形,各种结果输出,当时并不明白,以前也没见过,因此总会跳过实验整个设计直接看结果。在学了这门课后总算对其有了初步的认识。1、SPSS的认识及数据文件的处理心得体会一块是了解SPSS软件的历史及基本功能,还有一块就是SPSS软件当中一个模块叫做数据文件的处理,在认识SPSS软件当中了解到它是一组社会科学统计软件包,诞生于1968年,当时美国的3位大学生开发出了它,经过这么多年的后续开发,SPSS已经有了很多的版本,具有了更的兼容性、和更友好的操作界面,也在很多的学科领域得到了应用,而在教育中的应用只是它的一个分支。此外它对硬件的要求也很低,当前一般的电脑都能安装它,安装的过程中也没有什么特殊的方法,傻瓜式的安装方式完全就可以满足。在数据文件的处理方面,主要是要学会定义变量、处理变量两方面;定义变量是要注意根据自己实际采集的数据来定义变量,例如是数值型的变量还是文本型的变量及变量的长度,小数点保留尾数等,总之就是一句话,根据实际调查的数据要求来定义相应变量。变量定义只有只要细心的将实际调查的数据录入到SPSS当中即可,当然也可以在SPSS软件之外进行数据编制,可以通过EXECEL等编辑后可以直接导入到SPSS中。在处理变量模块当中,可以对变量进行添加、删除、拆分与合并等操作,只要根据实际调查数据,细心调整变量,使操作更加简便和明了。2、数据清理与基本统计及测量质量分析的心得体会这里我也是把它分为两块进行学习,一块是数据的清理,另一块是相关统计理论的学习。在数据清理方面主要学习了奇异数据的检查与清理,在这里我觉得非常有必要进行数据清理,在实际的调查数据时难免会出现错误或者碰到极为特殊的典型案例,所以这些数据很难符合大众规律,在统计、分析过程中可能会造成分析结果异常,从而直接影响最终的结论。所以觉得非常有必要进行数据检查与清理。而我认为本节的难点不是怎样熟练运用SPSS软件,而是在第二块中的,相关统计理论的学习,学习这些理论需要一定的数学基础,只有明确这些理(论如均值、标准误差、中数、众数、全距、四分位等)原理,知其然,知其所以然,这才是关键,在SPSS中想要实现对数据进行以上分析只需要轻轻点击一下按钮就可以是轻松实现,但是如果不清楚到底用它们来做什么就无从谈起做数据分析了,所以本节内容知道分析原理的重要性要远远大用SPSS对数据做出相关分析的重要性。总结为一句话“知道它们是做什么的后才会让它们去做该做的工作”。3、T检验的心得体会在学习T检验时,首先要明确什么样的数据适合T检验,T检验的结果要说明什么问题?经过学习可以知道,T检验是对两组数据间的平均水平或均数的比较,通过比较可以得出两组数据间的显著性水平,而这两组数据都要符合正态分布,方差具有齐同性,T检验由两种情况,一种配对提检验,要求两组数据不可以独立颠倒顺序,如果颠倒顺序就会改变问题的性质,这种T检验称为配对T检验;另一种情况下的T检验是两组数据可以任意颠倒顺的检验称为独立样本的T检验。但是这两种情况都必须符合最先的要求,即都是符合正态分布,方差都具有齐同性。通过SPSS的相关操作可以轻松完成检验,但是在检验的过程中必须设置置信区间,一般设置为95%,在设置置信区间时必须要考虑到所做分析的数据,如果像要得到显著性差异的结果则可尽量将置信区间设置小些,如果想要得到不显著差异就要将置信区间甚至大些,我的理解为若置信区间小,则可以理解为在小范围内是可以相信的,但如果将分析结果的置信区间值调大则说明在很大的范围内这个结果可信,反之则不可信,也就是说范围越大,不可信的因素就会越多,做出可信的结果的可能性就会越小,所以在用SPSS的进行T检验时,一定要提前考虑想要得到的检验结果,尽可能将预想结果与实际结果吻合。本节课最主要的是学会进行T检验,根据数据选择适合的T检验,值得思考的是,两组数据是否符合正态分布、方差的齐同性都需要在T检验前明确,不然无法进行T检验,但是在T检验的过程中SPSS也提供了一项进行是否符合正态分布的选项,是否也可以理解为在未知两组数据的分布情况时也可以进行T检验?只要先证明两组数据方差具有齐同性后,就进行T检验,检验后SPSS会输出两组数据是否符合正态分布,如果符合则结果可取,否则结果不可取。4、方差分析的心得与体会T检验和方差分析是有很大关联的,T检验是分析两组间数据的关系,而方差分析则是分析两组以上的组间的关系,两组方法都是要求数据符合正态分布,方差具有齐同性。其各组间要同质,组内异质,这样数据才具有说服力。本节课方差分析包括四部分,分别为单因素方差分析、无重复实验的双因素方差分析、重复试验的双因素方差分析及协方差分析。分为以上四种主要是基于分析的问题所包含的变量个数和各变量间有无相互影响,还有就是排除无法控制的协变量的影响的分析来区分分析方法。例如,只有一个变量的分析就用单因素分析;基于问题中的两个变量间没有相互影响的分析就用无重复实验的双因素方差分析,两个变量有影响就用重复试验的双因素方差分析,要排除无法控制的因素进行分析就用协方差分析。以上各种方差分析情况都基于不同的统计公式,要是学习这些理论则需要很好的数学基础。对最终分析结果的解读则需要T检验的解读结果知识。归结为一点:最终想得到差异性显著的结果还是差异不明显的结果则要再分析前就有预设。以此来证明自己的结果分析。5、相关分析的心得与体会事物间的相互联系与影响大致分为两种,一种是函数关系即一一对应关系,而另一种是统计关系。函数关系比较容易分析和测量,而实际数据并不都像函数关系那样简单,这时则需要另一种测量方法----相关分析,衡量事物之间或变量间的线性相关程度的强弱,并用适当的统计指标表示出来,这个过程就是相关分析。相关分析分多种情况,分为联系变量的相关分析、等级变量的相关分析、偏相关分析和距离相关分析,之所以分为几种也是根据要分析的对象的变化而定,如连续变量的相关分析主要是只变量不是函数关系,而是统计关系且变量数据间可以比较大小,可以加减来计算差异的数据,此外其依据的是Pearson相关系数,还有就是因为数据小于30次分析无意义,所以就要求分析数据要大于30个。如果数据小于30则用等级相关分析,且两种方法分析的数据都要符合正态分布。当数据小于30且符合正态分布且又是表达为有序或顺序(等级、方位、大小等)时则用等级变量的相关分析。与协方差分析类似,二元变量无法有效真实反映事物间的相关关系时,且数据都符合以上要求是则用偏相关分析,也就是说提出其他相关因素影响的情况下再来分析。以上三种相关分析都是分析事物间的相关关系,而距离相关分析则是分析对观测量之间或变量之间相似或不相似的程度的一种测量,它可以用于同一变量内也可以用于变量之间的测量。对以上四种相关分析简单总结为分的对象分为两种,一种是对象间,另一种是变量间。被分析的对象都符合正态分布,针对数量(30个)采用不同分析方法,针对对象的性质不同采用不同的方法。以上为对前三种相关分析方法提出,最后一种距离相关分析是分析观测值的相似性。6、卡方检验的心得体会卡方检验与以上的分析有很大不同,跨度较大,卡方检验主要是分析品质相关问题,所谓品质相关问题其特征是每个个体都有至少两个特征或变量,每个特征的取值可以是顺序型的(可比大小,不能加减)或者是名义型的(连大小都不能比)例如:不同文化程度的人对莫伊政策的态度或工作业绩是否相关?。可以简单将其理解为是用来专门分析品质相关的检验,它是一种非参数检验,而在此之前的检验都是参数检验即:分布形态已知(正态分布或近似正态分布)方差具有齐同性等。卡方检验由多种,即一般卡方检验、配对卡方的一致性检验、分层卡方检验。在一般卡方检验中应注意由原始数据得出的评述数据应给各类数据加权。而配对卡方的一致性检验则要注意如何区分什么情况用配对卡方的一致性检验,如两位专家对一批大学独自做出等级判断,问他们的判读是否一致,判断水平有无差异?这则是一个典型的配对资料,及看是否一致,有看差异在哪里。而分层卡方检验可以理解为对多种情况下的多个样本进行逐次比较,最终分析各样本在不同情况下的关系。总之,本节应注意什么样的数据是品质相关的。卡方检验是用来分析什么样情况的数据。7、聚类分析的相关心得体会聚类分析简而言之就是在没有先验的情况下将收集的数据进行分类。所谓的“物以类聚”,本节分两块,一种是在数据在200个以内的层次聚类分析,就是按照逐次聚合的方式进行比较最终分为所要求的几类。还有一种就是数据超过200个时为了省时而采用的快速聚类,但快速聚类只能进行连续变量的聚类。分层聚类可以针对样本进行分类,也可以针对变量进行分类。在分层聚类和快速聚类的分析结果解释中不同于以上其他分析,之前主要分析相关性,而聚类分析则主要看数据最终分成几类及聚类的过程。其实最终是要根据分类的情况提出对策才是关键。至于快速聚类分析基本与分层聚类分析相似,唯一不同就是快速聚类分析的分析范围受限,不如分层聚类分数广泛,还有就是快速聚类的输出结果中,有一项输出是分析各项与最终分成的类之间的相关性检验,如果显著则说明原始数据与各类间差异大,说明分类成功,否则说明不成功。学习了SPSS后,我不禁想到了SPSS与Excel的区别,这一点是针对像我这样开始只懂得用EXCEL的人来说。从个人的体会来说,二种软件有一定相似,操作都简便,同时又有一些可以互补的地方。但是SPSS又比Excel更加强大:一、图型的表现力是SPSS的主要优点之一应该说,Excel的图型表现主要是简便,对许多的人来说基本够用,但对于科学的表现,SPSS就更为详细和准确,这一点据说在所有统计软件中都突出。二、通过SPSS检验方差齐性和数据分布假设检验中,采用的t检验和方差检验都需要满足二个要求,即1.样本方差齐性2.样本总体呈正态分布在Excel中,提供了F检验来检验方差齐性问题,也就是可以先通过F检验确定方差齐性与否来选择下一步用哪个T检验或方差检验分析工具。但只要数据多于二组则无从下手;通过描述统计大约能从峰度和偏度来了解样本的分布实际工作中,只要分布单峰且近似对称分布,也可应用,但要具体确定样本的分布也有难度。这二个问题在SPSS就可以解决。通过老师细心的讲解,我们知道了SPSS分析的正确步骤,即懂得了如何正确组织数据、如何利用SPSS对数据进行基本加工和整理,明白了应从何处入手分析、应采用SPSS中的哪些分析方法和功能实现对各类数据由浅入深的分析,清楚了怎样理解和解释分析结果。在此之前,我们所了解的关于数据的计算机应用软件仅局限于Excel,而如今,我们不但掌握了SPSS,还能够在两者之间进行数据的转换。这一课程的学习可谓是受益匪浅,对于一组数据我们不再被表面现象和其中的干扰因素所蒙蔽,而是能够剖开现象看本质,这使我们对真实的理解更加贴近更加透彻。

1 / 9
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功