§53反比例函数的应用

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

风满楼工作组制作教案§5.3反比例函数的应用一、教学分析1、内容分析这节内容是在学生已经接受了反比例函数解析式、图象及性质之后进行的。教材通过展示一些具体情境,学生在分析问题解决问题的过程中体会“反比例函数的应用”。用函数观点处理实际问题,体现了数形结合的思想方法,同时对函数的三种表示方法进行整合,初步形成对函数概念的整体性认识。2、学情分析学生已经接受了反比例函数解析式、图象及性质,有应用一次函数解决问题的经验,函数思想、数形结合思想有待形成。二、教学任务分析教学目标(一)教学知识点1.经历分析实际问题中变量之间的关系,建立反比例函数模型,进而解决问题的过程.2.体会数学与现实生活的紧密联系,增强应用意识.提高运用代数方法解决问题的能力(二)能力训练要求通过对反比例函数的应用,培养学生解决问题的能力.(三)情感与价值观要求经历将一些实际问题抽象为数学问题的过程,初步学会从数学的角度提出问题。理解问题,并能综合运用所学的知识和技能解决问题.发展应用意识,初步认识数学与人类生活的密切联系及对人类历史发展的作用.教学重点用反比例函数的知识解决实际问题.教学难点如何从实际问题中抽象出数学问题、建立数学模型,用数学知识去解决实际问题.教学方法1、教法:师生互动,引导发现2、学法:自主探究,合作交流三、教学过程分析风满楼工作组制作教案本节课设计了六个教学环节:第一环节:复习回顾;第二环节:情境导入;第三环节:想一想;第四环节:做一做;第五环节:练一练;第六环节:课时小结;第七环节:布置作业教学过程一.复习回顾(活动目的:以提问的方式引导学生复习反比例函数的图象与性质)1、什么是反比例函数?其图象是什么?反比例函数的性质?2、小明家离学校3600米,他骑自行车的速度x(米/分)与时间y(分)之间的关系式是_______________若他每分钟骑450米,需_____分钟到达学校。二.情境导入(活动目的:多媒体给出情境材料,引起学生的兴趣,体现数学的现实性。)过沼泽地时,人们常常用木板来垫脚.当人和木板对地面的压力一定时,随着木板面积的变化,人和木板对地面的压强将如何变化?三.想一想(活动目的:用函数观点来处理实际问题的应用,加深对函数的认识。)我校科技小组进行野外考察,途中遇到一片十几米宽的烂泥湿地。1、为安全迅速通过这片湿地,想一想,我们应该怎样做?2、他们沿着前进路线铺垫了若干木板,构筑成一条临时通道,从而顺利成任务。你能帮助他们解释这个道理吗?3、当人和木板对湿地的压力一定时,随着木板面积S(㎡)的变化,人和木板对地面的压强P(Pa)将如何变化?如果人和木板对湿地地面的压力合计为600N,那么(1)用含S的代数式表示p,p是S的反比例函数吗?为什么?(2)当木板画积为0.2m2时.压强是多少?(3)如果要求压强不超过6000Pa,木板面积至少要多大?(4)在直角坐标系中,作出相应的函数图象.风满楼工作组制作教案(5)清利用图象对(2)和(3)作出直观解释,并与同伴进行交流.[师]分析:首先要根据题意分析实际问题中的两个变量,然后看这两个变量之间存在的关系,从而去分析它们之间的关系是否为反比例函数关系,若是则可用反比例函数的有关知识去解决问题.请大家互相交流后回答.(活动效果及注意事项:在(4)中,要启发学生思考:为什么只需在第一象限作函数图象?此外,还要注意单位长度所表示的数值。在(5)中,要留有充分时间让学生交流,领会实际问题的数学意义,体会数与形的统一。四.做一做(活动目的:让学生利用图形上所提供的信息,正确写出反比例函数解析式;并通过综合运用表格,图象及关系式,形成对反比例函数较完整的认识。)1.蓄电池的电压为定值.使用此电源时,电流I(A)与电阻R(Ω)之间的函数关系如下图所示;(1)蓄电池的电压是多少?你能写出这一函数的表达式吗?(2)完成下表,并回答问题:如果以此蓄电池为电源的用电器限制电流不得超过10A,那么用电器的可变电阻应控制在什么范围内?R/Ω345678910I/A4[师]从图形上来看,I和R之间可能是反比例函数关系.电压U就相当于反比例函数中的k.要写出函数的表达式,实际上就是确定k(U),只需要一个条件即可,而图中已给出了一个点的坐标,所以这个问题就解决了,填表实际上是已知自变量求函数值.风满楼工作组制作教案2.如下图,正比例函数y=k1x的图象与反比例函数y=xk2的图象相交于A,B两点,其中点A的坐标为(3,23).(1)分别写出这两个函数的表达式:(2)你能求出点B的坐标吗?你是怎样求的?与同伴进行交流.[师]要求这两个函数的表达式,只要把A点的坐标代入即可求出k1,k2,求点B的坐标即求y=k1x与y=xk2的交点.(活动效果及注意事项:在这个活动中,逐步提高学生从函数图象中获取信息的能力,提高感知水平;此外,在解决实际问题时,要引导学生体会知识之间的联系及知识的综合运用。)五.练一练(活动目的:用函数观点来处理实际问题的应用,加深对函数的认识。)1.某蓄水池的排水管每时排水8m3,6h可将满池水全部排空.(1)蓄水池的容积是多少?(2)如果增加排水管,使每时的排水量达到Q(m3),那么将满池水排空所需的时间t(h)将如何变化?(3)写出t与Q之间的关系式;(4)如果准备在5h内将满池水排空,那么每时的排水量至少为多少?(5)已知排水管的最大排水量为每时12m3,那么最少多长时间可将满池水全部排空?2.如图,Rt⊿ABO的顶点A是双曲线xky与直线)1(kxy在第二象限的交点,AB⊥x轴于B且S△ABO=23(1)求这两个函数的解析式(2)求直线与双曲线的两个交点A,C的坐标和△AOC的面积。风满楼工作组制作教案六.课时小结(活动目的:通过老师小结,带领学生回顾反思本节课对知识的研究探索过程,提炼数学思想,掌握数学知识)今天这节课的活动你什么收获?七.课后作业习题5.4.OyxBAC

1 / 5
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功