1073§5用Mathematica求重积分以及相关的应用5.1常用的重积分运算函数ParametricPlot[{x[t],y[t],{t,a,b}]:作二维参数方程的图形。Plot3D[f[x,y],{x,a,b},{y,c,d}]:作),(yxfz的图形。ParametricPlot3D[{x[u,v],y[u,v],z[u,v]},{u,a,b}{v,c,d}]:作三维参数方程的图形。Integrate[f[x,y],{x,a,b},{y,c,d}]:计算累次积分。例5.1计算下列重积分:1.dxdyyyxxR)3(323,其中R=[0,1]×[0,1].解In[1]:=Integrate[x^3+3x^2y+y^3,{x,0,1},{y,0,1}]Out[1]=12.dxdyeRaypx(p,q是常数),其中R=[0,a]×[0,a].解In[1]:=Integrate[E^(p*x+q*y),{x,0,a},{y,0,a}]Out[1]=pqeepqeaqapaq)1(13.dxdyyxR||,其中R=[-1,1]×[-1,1].解In[1]:=Integrate[Abs[x+y],{x,0,Pi},{y,0,Pi}]Out[1]=34.dxdydzzxyV)(2,其中V=[-2,5]×[-3,3]×[0,1].解In[1]:=Integrate[x*y+z^2,{x,-2,5},{y,-3,3},{z,0,1}]Out[1]=14例5.2计算下列重积分:1.求二重积分dxdyyxD22,其中是D由直线x=2,y=x和xy=1双曲线所围成。解先画出被积区域D的图形:In[1]:=Clear[t1,t2];a=ParametricPlot[{2,y},{y,0,3},DisplayFunction-Identity];b=Plot[{y=x,y=1/x},PlotRange-{0,3},AspectRatio-Automatic,1074DisplayFunction-Indentity];Show[a,b,PlotRange-{0,2.5},AspectRatio-Automatic,DisplayFunction-$DisplayFunction];0.511.522.530.511.522.5Out[1]=-Graphics-再求出D的边界曲线的交点:In[2]:=Solve[x-2==0,y-x==0,{x,y}]Solve[x-2==0,x*y-1==0,{x,y}]Solve[x*y-1==0,y-x==0,{x,y}]Out[2]={{x-2,y-2}}{{x-21,y-2}}{{x--1,y--1},{x-1,y-1}}最后计算积分:In[3]:=Clear[y];Integrate[x^2/y^2,{x,1,2},{y,1/x,x}]Out[3]=492.求二重积分dxdyxD,其中D是xyx22.解先画出被积区域}|),{(22xyxyxD的图形:In[1]:=ParametricPlot[{(1/2)*Sin[t]+1/2,(1/2)*Cos[t]},{t,0,2Pi},AspectRatio-Automatic]Out[1]=-Graphics-10750.20.40.60.81-0.4-0.20.20.4计算积分:In[2]:=Integrate[Sqrt[x],{x,0,1},{y,0,Sqrt[x-x^2]}]Out[2]=1543.求三重积分Vdadydzzxy32,其中V是由曲面z=xy,平面y=x,x=1,z=0所围成。解先画出空间图形:In[1]:=a1=Plot3D[0,{x,0,2},{y,0,2},DisplayFunction-Identity];a2=Plot3D[x*y,{x,0,2},{y,0,2},DisplayFunction-Identity];a3=ParametricPlot3D[{x,x,z}{x,0,2},{z,0,2},DisplayFunction-Identity];a4=ParametricPlot3D[{1,y,z}{y,0,2},{z,0,2},DisplayFunction-Identity];00.511.52x00.511.52y01234z00.511.52xOut[1]=-Graphics-再画出立体关于XOY面的投影域:In[2]:=b1=Plot[x,{-2,2}];b2=ParametricPlot[{1,y},{y,-2,2}];1076Show[b1,b2]-2-112-2-112Out[2]=-Graphics-计算积分:In[3]:=Clear[x,y,z];Integrate[x*y^2*z^3,{x,0,1},{y,0,x},{z,0,x*y}]Out[3]=3641例5.3求由坐标平面及x=2,y=3,x+y+z=4,所围的角柱体的体积。解In[1]:=Clear[x,y,u,v,t1,t2,t3,t4,a1,a2,a3,a4,b1,b2];t1=Plot3D[0,{x,0,4},{y,0,4},DisplayFunction-Identity];t2=Plot3D[4-x-y,{x,0,4},{y,0,4},DisplayFunction-Identity];t3=ParametricPlot3D[{2,y,z},],{y,0,4},{z,0,4},DisplayFunction-Identity];t4=ParametricPlot3D[{x,3,z},{x,0,4},{y,0,4},DisplayFunction-Identity];Show[t1,t2,t3,t4,AxesLabel-{“x”,”y”,”z”},AspectRatio-Automatic,DisplayFunction-$DisplayFunction,PlotRange-{0,4},ViewPiont-{-1,-1,1}]01234x01234y01234z01234x01234zOut[1]=-Graphics-例5.4求z=xy,0,22zxyx围成的体的体积。1077解In[2]:=a1=PrametricPlot[{x,3},{x,0,4},DisPlayFunction-Identity];a2=PrametricPlot[{2,y},{y,0,4},DisPlayFunction-Identity];a3=Plot[4-x,{x,0,4},DisPlayFunction-Identity];Show[a1,a2,a3,AxesLabel-{“x”,”y”},AspectRatio-Automatic,PlotRange-{0,4},DisplayFunction-$DisplayFunction]1234x0.511.522.533.54yOut[2]=-Graphics-In[3]:=b1=Integrate[4-x-y,{x,0,1},{y,0,3}];b2=Integrate[4-x-y,{x,1,2},{y,0,4}];b3=b1+b2Out[3]=655In[4]:=c1=Plot3D[x*y,{x,-2,2,},{y,-2,2},DisplayFunction-Identity];c2=ParametricPlot3D[{(1/2)Sin[t]+1/2,(1/2)Cos[t],z},{t,0,2Pi},{z,-2,2},DisplayFunction-$DisplayFunction,ViewPoint-{-1,2,2}]-2-1012x-2-1012y-2-1012z-2-1012xOut[4]=-Graphics-In[5]:=ParametricPlot[{(1/2)*Sin[t]+1/2,(1/2)*Cos[t]},{t,0,2Pi},AspectRatio-Automatic]10780.20.40.60.81-0.4-0.20.20.4Out[5]=-Graphics-In[6]:=Integrate[x*y,{x,0,1},{y,0,Sqrt[x-x^2]}]Out[6]:=241In[7]:=%*2Out[7]=1211079练习9.51计算下列重积分:(1)Ddxdyxy)2(,其中D=[3,5]×[1,2];(2)DdxdyyxCos)(,其中D=[0,2]×[0,];(3)Vzdxdydzyxcoscos,其中V=[0,1]×[0,2]×[0,2];(4)Ddxdyxy||,其中D为圆域222ayx;(5)Ddxdyxy2,其中D由抛物线pxy22与直线)0(2ppx所围成的区域;(6)Vdxdydzzxy)cos(,其中V是由xy,0y=,0z=及xz+=2所围成的区域。2求下列曲面所围成立体V的体积。(1)V是由22yxz和zxy=+所围成的立体;(2)V是由曲面2222yxz和22yxz所围成的立体;