斐斐课件园§14.3等腰三角形1.等腰三角形知识要点1.有两条边相等的三角形是等腰三角形.相等的两条边叫做腰,另一条边叫做底边.两腰所夹的角叫做顶角,腰与底边的夹角叫做底角.2.三角形按边分类:三角形()不等边三角形底边和腰不相等的等腰三角形等腰三角形等边三角形正三角形3.等腰三角形是轴对称图形,其性质是:性质1:等腰三角形的两个底角相等(简写成“等边对等角”)性质2:等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合.4.等腰三角形的判定定理:如果一个三角形有两个角相等,那么这两个角所对的边也相等(简写成“等角对等边”).典型例题例:如图,五边形ABCDE中AB=AE,BC=DE,∠ABC=∠AED,点F是CD的中点.求证:AF⊥CD.分析:要证明AF⊥CD,而点F是CD的中点,联想到这是等腰三角形特有的性质,于是连接AC、AD,证明AC=AD,利用等腰三角形“三线合一”的性质得到结论.证明:连接AC、AD在△ABC和△AED中()()()ABAEABCAEDBCED已知已知已知∴△ABC≌△AED(SAD)∴AC=AD(全等三角形的对应边相等)又∵△ACD中AF是CD边的中线(已知)∴AF⊥CD(等腰三角形底边上的高和底边上的中线互相重合)EDCABF斐斐课件园练习题(第一课时)一、选择题1.等腰三角形的对称轴是()A.顶角的平分线B.底边上的高C.底边上的中线D.底边上的高所在的直线2.等腰三角形有两条边长为4cm和9cm,则该三角形的周长是()A.17cmB.22cmC.17cm或22cmD.18cm3.等腰三角形的顶角是80°,则一腰上的高与底边的夹角是()A.40°B.50°C.60°D.30°4.等腰三角形的一个外角是80°,则其底角是()A.100°B.100°或40°C.40°D.80°5.如图,C、E和B、D、F分别在∠GAH的两边上,且AB=BC=CD=DE=EF,若∠A=18°,则∠GEF的度数是()A.80°B.90°C.100°D.108°EDCABHFG二、填空题6.等腰△ABC的底角是60°,则顶角是________度.7.等腰三角形“三线合一”是指___________.8.等腰三角形的顶角是n°,则两个底角的角平分线所夹的钝角是_________.9.如图,△ABC中AB=AC,EB=BD=DC=CF,∠A=40°,则∠EDF的度数是_____.10.△ABC中,AB=AC.点D在BC边上(1)∵AD平分∠BAC,∴_______=________;________⊥_________;(2)∵AD是中线,∴∠________=∠________;________⊥________;(3)∵AD⊥BC,∴∠________=∠_______;_______=_______.三、解答题11.已知△ABC中AB=AC,AD⊥BC于D,若△ABC、△ABD的周长分别是20cm和16cm,求AD的长.斐斐课件园.如图,在四边形ABCD中,AB=AD,CB=CD,求证:∠ABC=∠ADC.DCAB13.已知△ABC中AB=AC,点P是底边的中点,PD⊥AB,PE⊥AC,垂足分别是D、E,求证:PD=PE.四、探究题14.如图,CD是△ABC的中线,且CD=12AB,你知道∠ACB的度数是多少吗?由此你能得到一个什么结论?请叙述出来与你的同伴交流.DCAB答案:1.D2.B3.A4.C5.B6.607.等腰三角形底边上的高、底边上的中线、顶角的平分线互相重合8.(90+12n)°9.70°10.略11.6cm12.连接BD,∵AB=AD,∴∠ABD=∠ADB.∵CB=CD,∴∠CBD=∠CDB.∴∠ABC=∠ADC13.连接AP,证明AP平分∠BAC.14.∠ACB=90°.结论:若一个三角形一条边上的中线等于这条边的一半,那么这个三角形是直角三角形斐斐课件园练习题(第二课时)一、选择题1.如图1,已知OC平分∠AOB,CD∥OB,若OD=3cm,则CD等于()A.3cmB.4cmC.1.5cmD.2cmDCAB0EDCABFEDCABHF(1)(2)(3)2.△ABC中AB=AC,∠A=36°,BD平分∠ABC交AC于D,则图中的等腰三角形有()A.1个B.2个C.3个D.4个3.如图2,△ABC中,∠ABC与∠ACB的平分线交于点F,过点F作DE∥BC交AB于点D,交AC于点E,那么下列结论:①△BDF和△CEF都是等腰三角形;②DE=BD+CE;③△ADE的周长等于AB与AC的和;④BF=CF.其中正确的有()A.①②③B.①②③④C.①②D.①4.如图3,Rt△ABC中,CD是斜边AB上的高,角平分线AE交CD于H,EF⊥AB于F,则下列结论中不正确的是()A.∠ACD=∠BB.CH=CE=EFC.CH=HDD.AC=AF二、填空题5.△ABC中,∠A=65°,∠B=50°,则AB:BC=_________.6.已知AD是△ABC的外角∠EAC的平分线,要使AD∥BC,则△ABC的边一定满足________.7.△ABC中,∠C=∠B,D、E分别是AB、AC上的点,AE=2cm,且DE∥BC,则AD=________.8.一灯塔P在小岛A的北偏西25°,从小岛A沿正北方向前进30海里后到达小岛,此时测得灯塔P在北偏西50°方向,则P与小岛B相距________.三、解答题9.如图,已知AB=AC,E、D分别在AB、AC上,BD与CE交于点F,且∠ABD=∠ACE,求证:BF=CF.EDCABF斐斐课件园.如图,△ABC中BA=BC,点D是AB延长线上一点,DF⊥AC于F交BC于E,求证:△DBE是等腰三角形.EDCABF四、探究题11.如图,AF是△ABC的角平分线,BD⊥AF交AF的延长线于D,DE∥AC交AB于E,求证:AE=BE.EDCABF答案:1.A2.C3.A4.C5.16.AB=AC7.2cm8.30海里9.连接BC,∵AB=AC,∴∠ABC=∠ACB,又∵∠ABD=∠ACE,∴∠FBC=∠FCB,∴FB=FC10.证明∠D=∠BED11.证明∠EAD=∠EDA,∠EBD=∠EDB分别得到AE=DE,BE=DE斐斐课件园等边三角形知识要点1.三条边都相等的三角形叫做等边三角形,也叫做正三角形.2.等边三角形的性质:等边三角形的三个内角都相等,并且每一个内角都等于60°3.等边三角形的判定方法:(1)三条边都相等的三角形是等边三角形;(2)三个角都相等的三角形是等边三角形;(3)有一个角是60°的等腰三角形是等边三角形.4.在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半.典型例题例:如图,△ABC是边长为1的等边三角形,BD=CD,∠BDC=120°,E、F分别在AB、AC上,且∠EDF=60°,求△AEF的周长.分析:由∠BDC=120°和∠EDF=60°得到∠BDE+∠CDF=60°,从而想到把这两个角拼在一起构造全等三角形,即延长AC至点P,使CP=BE,证明△BDE≌CDP,然后证明△DEF≌△DPF,得到EF=PF,从而把△AEF的周长转化为用△ABC的边长表示.解:延长AC至点P,使CP=BE,连接PD.∵△ABC是等边三角形∴∠ABC=∠ACB=60°∵BD=CD,∠BDC=120°∴∠DBC=∠DCB=30°∴∠EBD=∠DCF=90°∴∠DCP=∠DBE=90°在△BDE和△CDP中BDCDDBEDCPBECP∴△BDE≌△CDP(SAS)∴DE=DP,∠BDE=∠CDP∵∠BDC=120°,∠EDF=60°∴∠BDE+∠CDF=60°∴∠CDP+∠CDF=60°∴∠EDF=∠PDF=60°在△DEF≌△DPF中DEDPEDFPDFDFDF∴△DEF≌△DPF(SAS)∴EF=FP∴EF=FC+BE∴△AEF的周长=AE+EF+AF=AB+AC=2练习题EDCBAPF斐斐课件园一、选择题1.正△ABC的两条角平分线BD和CE交于点I,则∠BIC等于()A.60°B.90°C.120°D.150°2.下列三角形:①有两个角等于60°;②有一个角等于60°的等腰三角形;③三个外角(每个顶点处各取一个外角)都相等的三角形;④一腰上的中线也是这条腰上的高的等腰三角形.其中是等边三角形的有()A.①②③B.①②④C.①③D.①②③④3.如图,D、E、F分别是等边△ABC各边上的点,且AD=BE=CF,则△DEF的形状是()A.等边三角形B.腰和底边不相等的等腰三角形C.直角三角形D.不等边三角形EDCABF21EDCAB4.Rt△ABC中,CD是斜边AB上的高,∠B=30°,AD=2cm,则AB的长度是()A.2cmB.4cmC.8cmD.16cm5.如图,E是等边△ABC中AC边上的点,∠1=∠2,BE=CD,则对△ADE的形状最准备的判断是()A.等腰三角形B.等边三角形C.不等边三角形D.不能确定形状二、填空题6.△ABC中,AB=AC,∠A=∠C,则∠B=_______.7.已知AD是等边△ABC的高,BE是AC边的中线,AD与BE交于点F,则∠AFE=______.8.等边三角形是轴对称图形,它有______条对称轴,分别是_____________.9.△ABC中,∠B=∠C=15°,AB=2cm,CD⊥AB交BA的延长线于点D,则CD的长度是_______.三、解答题10.已知D、E分别是等边△ABC中AB、AC上的点,且AE=BD,求BE与CD的夹角是多少度?11.如图,△ABC中,AB=AC,∠BAC=120°,AD⊥AC交BC于点D,求证:BC=3AD.斐斐课件园.如图,已知点B、C、D在同一条直线上,△ABC和△CDE都是等边三角形.BE交AC于F,AD交CE于H,①求证:△BCE≌△ACD;②求证:CF=CH;③判断△CFH的形状并说明理由.EDCABHF四、探究题13.如图,点E是等边△ABC内一点,且EA=EB,△ABC外一点D满足BD=AC,且BE平分∠DBC,求∠BDE的度数.(提示:连接CE)EDCAB答案:斐斐课件园.C2.D3.A4.C5.B6.60°7.60°8.三;三边的垂直平分线9.1cm10.60°或120°11.∵AB=AC,∠BAC=120°,∴∠B=∠C=30°,∴在Rt△ADC中CD=2AD,∵∠BAC=120°,∴∠BAD=120°-90°=30°,∴∠B=∠BAD,∴AD=BD,∴BC=3AD12.①∵∠ACB=∠DCE=60°,∴∠BCE=∠ACD.又∵BC=AC,CE=CD,∴△BCE≌△ACD;②证明△BCF≌△ACH;③△CFH是等边三角形.13.连接CE,先证明△BCE≌△ACE得到∠BCE=∠ACE=30°,再证明△BDE≌△BCE得到∠BDE=∠BCE=30°