1“哥德巴赫猜想”讲义(第12讲)“哥德巴赫猜想”证明(7)主讲王若仲第11讲我们讲解了核心部分的定理1,这一讲我们讲核心部分的定理2。定理2:对于任何一个比较大的偶数2m,设奇素数p1,p2,p3,…,pt均为不大于√2m的全体奇素数(pi<pj,i<j,i、j=1,2,3,…,t),t∈N,且偶数2m均不含有奇素数因子p1,p2,p3,…,pt;那么集合{pi,2pi,3pi,4pi,5pi,…,mipi}∩{pj,2pj,3pj,4pj,5pj,…,mjpj}∩…∩{pr,2pr,3pr,4pr,5pr,…,mrpr}∩{ps,2ps,3ps,4ps,5ps,…,msps}中正整数的总个数与集合{(2m-pi),(2m-2pi),(2m-3pi),(2m-4pi),(2m-5pi),…,(2m-mipi)}∩{(2m-pj),(2m-2pj),(2m-3pj),(2m-4pj),(2m-5pj),…,(2m-mjpj)}∩…∩{(2m-pr),(2m-2pr),(2m-3pr),(2m-4pr),(2m-5pr),…,(2m-mrpr)}∩{(2m-ps),(2m-2ps),(2m-3ps),(2m-4ps),(2m-5ps),…,(2m-msps)}中正整数的总个数相等。其中pi,pj,…,pr,ps为两两互不相同的奇素数,且均小于√2m;mipi为对应的集合情形下不大于偶数2m的最大正整数,mjpj为对应的集合情形下不大于偶数2m的最大正整数,…,mrpr为对应的集合情形下不大于偶数2m的最大正整数,msps为对应的集合情形下不大于偶数2m的最大正整数。2证明:对于集合{(2m-pi),(2m-2pi),(2m-3pi),(2m-4pi),(2m-5pi),…,(2m-mipi)},我们令2m-mipi=hi,因为mipi为对应的集合情形下不大于偶数2m的最大正整数,显然hi<pi,则2m-(mi-1)pi=2m-mipi+pi=pi+hi,2m-(mi-2)pi=2m-mipi+2pi=2pi+hi,…,(2m-2pi)=2m-[mi-(mi-2)]p1=(mi-2)pi+2m-mipi=(mi-2)pi+hi,(2m-pi)=2m-[mi-(mi-1)]p1=(mi-1)pi+2m-mipi=(mi-1)pi+hi;那么集合{(2m-pi),(2m-2pi),(2m-3pi),(2m-4pi),(2m-5pi),…,(2m-mipi)}={hi,(pi+hi),(2pi+hi),…,[(mi-2)pi+hi],[(mi-1)pi+hi]};我们令2m-mjpj=hj;…;2m-mrpr=hr;2m-msps=hs。同理可得:{(2m-pj),(2m-2pj),(2m-3pj),(2m-4pj),(2m-5pj),…,(2m-mjpj)}={hj,(pj+hj),(2pj+hj),…,[(mj-2)pj+hj],[(mj-1)pj+hj]},…,{(2m-pr),(2m-2pr),(2m-3pr),(2m-4pr),(2m-5pr),…,(2m-mrpr)}={hr,(pr+hr),(2pr+hr),…,[(mr-2)pr+hr],[(mr-1)pr+hr]},{(2m-ps),(2m-2ps),(2m-3ps),(2m-4ps),(2m-5ps),…,(2m-msps)}={hs,(ps+hs),(2ps+hs),…,[(ms-2)ps+hs],[(ms-1)ps+hs]}。因为前面令2m-mipi=hi,2m-mjpj=hj;…;2m-mrpr=hr;2m-msps=hs。那么有2m≡hi(modpi),2m≡hj(modpj),…,2m≡hr(modpr),2m≡hs(modps);所以集合{(2m-pi),(2m-2pi),(2m-3pi),(2m-4pi),(2m-5pi),…,(2m-mipi)}对应同余方程xi≡hi(modpi);集合{(2m-pj),(2m-2pj),(2m-3pj),(2m-4pj),(2m-5pj),…,(2m-mjpj)}对应同余方程xj≡hj(modpj);…;集合{(2m-pr),(2m-2pr),(2m-3pr),(2m-4pr),(2m-5pr),…,(2m-mrpr)}对应同余方程xr≡hr(modpr);3集合{(2m-ps),(2m-2ps),(2m-3ps),(2m-4ps),(2m-5ps),…,(2m-msps)}对应同余方程xs≡hs(modps)。由孙子—高斯定理可知,同余方程组xi≡hi(modpi),xj≡hj(modpj),…,xr≡hr(modpr),xs≡hs(modps)有无穷多解,且这些解关于模M=pipj…prps同余,又因为偶数2m是同余方程xi≡hi(modpi)的解,偶数2m也是同余方程xj≡hj(modpj)的解,…,偶数2m也是同余方程xr≡hr(modpr)的解,偶数2m也是同余方程xs≡hs(modps)的解;那么偶数2m也是同余方程组xi≡hi(modpi),xj≡hj(modpj),…,xr≡hr(modpr),xs≡hs(modps)的一个解。那么同余方程组xi≡hi(modpi),xj≡hj(modpj),…,xr≡hr(modpr),xs≡hs(modps)的解总可以转化为同余方程y≡k(modpipj…prps)的解,k为小于pipj…prps的正整数,且k=2m-pipj…prpsu,pipj…prpsu为小于偶数2m的最大正整数。那么2m-(u-1)pipj…prps=2m-pipj…prpsu+pipj…prps=pipj…prps+k,2m-(u-2)pipj…prps=2m-pipj…prpsu+2pipj…prps=2pipj…prps+k,…,(2m-2pipj…prps)=2m-[u-(u-2)]pipj…prps=(u-2)pipj…prps+2m-pipj…prpsu=(u-2)pipj…prps+k,(2m-pipj…prps)=2m-[u-(u-1)]pipj…prps=(u-1)pipj…prps+2m-pipj…prpsu=(u-1)pipj…prps+k;那么集合{(2m-pipj…prps),(2m-2pipj…prps),(2m-3pipj…prps),(2m-4pipj…prps),(2m-5pipj…prps),…,(2m-upipj…prps)}={k,(pipj…prps+k),(2pipj…prps+k),…,[(u-2)pipj…prps+k],[(u-1)pipj…prps+k]}。又从前面可知,偶数2m是同余方程y≡k(modpipj…prps)的一个4解,则偶数2m=upipj…prps+k。所以k对应pipj…prpsu,(pipj…prps+k)对应pipj…prps(u-1),(2pipj…prps+k)对应pipj…prps(u-2),(3pipj…prps+k)对应pipj…prps(u-3),…,[(u-1)pipj…prps+k]对应pipj…prps。故集合{pi,2pi,3pi,4pi,5pi,…,mipi}∩{pj,2pj,3pj,4pj,5pj,…,mjpj}∩…∩{pr,2pr,3pr,4pr,5pr,…,mrpr}∩{ps,2ps,3ps,4ps,5ps,…,msps}中正整数的总个数与集合{(2m-pi),(2m-2pi),(2m-3pi),(2m-4pi),(2m-5pi),…,(2m-mipi)}∩{(2m-pj),(2m-2pj),(2m-3pj),(2m-4pj),(2m-5pj),…,(2m-mjpj)}∩…∩{(2m-pr),(2m-2pr),(2m-3pr),(2m-4pr),(2m-5pr),…,(2m-mrpr)}∩{(2m-ps),(2m-2ps),(2m-3ps),(2m-4ps),(2m-5ps),…,(2m-msps)}中正整数的总个数相等。故定理2成立。例5:证明集合{3,6,9,12,15,18,21,24,27,30,33,36,39,42,45,48,51,54,57,60,63,66,69,72,75,78,81,84,87,90,93,96,99}∩{7,14,21,28,35,42,49,56,63,70,77,84,91,98}中正整数的总个数与{(100-3),(100-6),(100-9),(100-12),(100-15),(100-18),(100-21),(100-24),(100-27),(100-30),(100-33),(100-36),(100-39),(100-42),(100-45),(100-48),(100-51),(100-54),(100-57),(100-60),(100-63),(100-66),(100-69),(100-72),(100-75),(100-78),(100-81),(100-84),(100-87),(100-90),(100-93),(100-96),(100-99)}∩{(100-7),(100-14),(100-21),(100-28),(100-35),(100-42),(100-49),(100-56),(100-63),(100-70),(100-77),(100-84),5(100-91),(100-98)}中正整数的总个数相等。证明:因为集合{3,6,9,12,15,18,21,24,27,30,33,36,39,42,45,48,51,54,57,60,63,66,69,72,75,78,81,84,87,90,93,96,99}∩{7,14,21,28,35,42,49,56,63,70,77,84,91,98}={21,42,63,84}。又因为集合{(100-3),(100-6),(100-9),(100-12),(100-15),(100-18),(100-21),(100-24),(100-27),(100-30),(100-33),(100-36),(100-39),(100-42),(100-45),(100-48),(100-51),(100-54),(100-57),(100-60),(100-63),(100-66),(100-69),(100-72),(100-75),(100-78),(100-81),(100-84),(100-87),(100-90),(100-93),(100-96),(100-99)}∩{(100-7),(100-14),(100-21),(100-28),(100-35),(100-42),(100-49),(100-56),(100-63),(100-70),(100-77),(100-84),(100-91),(100-98)}={(100-21),(100-42),(100-63),(100-84)}。所以集合{3,6,9,12,15,18,21,24,27,30,33,36,39,42,45,48,51,54,57,60,63,66,69,72,75,78,81,84,87,90,93,96,99}∩{7,14,21,28,35,42,49,56,63,70,77,84,91,98}中正整数的总个数与{(100-3),(100-6),(100-9),(100-12),(100-15),(100-18),(100-21),(100-24),(100-27),(100-30),(100-33),(100-36),(100-39),(100-42),(100-45),(100-48),(100-51),(100-54),(100-57),(100-60),(100-63),(100-66),(100-69),(100-72),(100-75),(100-78),(100-81),6(100-84),(100-87),(100-90),(100-93)