VOLTE原理整理2016

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

一、LTE语音解决方案演进1.SvLTE(SimultaneousVoiceandLTE),即双待手机方式。手机同时工作在LTE和CS,前者提供数据业务,后者提供语音业务。是纯粹基于手机的方案。对网络无特别要求,不需要部署IMS,缺点是手机成本高、耗电高。目前已经有CDMA1x和LTE的双待手机,被一些CDMA运营商采用作为IMS部署前的过渡方案,而GSM/UMTS和LTE的双待手机目前还没有推出。2.CSFB(CircuitSwitchedFallBack)。LTE只提供数据业务,当发起或者接受语音呼叫时,回落到CS域进行处理。运营商无需部署IMS,只需要升级MSC就可以支持。这是一种快速提供业务的方案,但缺点是呼叫接续速度慢。CSFB适合作为IMS部署之前的过渡方案,另外还可以用来解决LTE手机漫游场景的语音呼叫问题,在拜访地网络没有部署IMS,或者IMS漫游协议尚未应用的情况下,CSFB可以为漫入的LTE用户提供语音业务。3.SRVCC(SingleRadioVoiceCallContinuity)。解决语音控制和移动到CS网络切换时的语音连续性问题。为基于IMS的VOIP呼叫解决方案,利用IMS核心网络提供LTEVoIP语音业务的路由、控制和业务触发,并提供LTE向2G/3G切换时的语音连续性保证。SRVCC的实现过程实质上就是一个切换过程,在LTE网络中终端是通过IMS来实现语音功能的,当终端离开LTE网络后,则通过MSCserver(MobileSwitchingCenterserver)切换到2G/3G网络中从而实现在2G/3G网络中的语音功能。4.VoLTE(VoiceoverLongTermEvolution)。实现LTE网络中的IMS域提供高清晰的语音服务。IMS由于支持多种接入和丰富的多媒体业务,成为全IP时代的核心网标准架构。经历了过去几年的发展成熟后,如今IMS已经跨越裂谷,成为固定话音领域VoBB、PSTN网改的主流选择,而且也被3GPP、GSMA确定为移动语音的标准架构。5.eSRVCCeSRVCC方案相对于SRVCC方案的增强在于减少了切换时长(切换时长小于300ms),使用户获得更好的通话体验。SRVCC:媒体的切换点是对端网络设备(如对端UE),影响切换时长的主要因素是会话切换后需要在IMS网络中创建新的承载。eSRVCC:相比于SRVCC,媒体切换点改为更靠近本端的设备。具体方案就是增加ATCF/ATGW功能实体作为媒体锚定点,无论是切换前还是切换后的会话消息都要经过ATCF/ATGW转发。后续在发生eSRVCC切换时,只需要创建UE与ATGW之间的承载通道,对端设备与ATGW之间的媒体流还是通过原承载通道传输。这样其创建新承载通道的消息交互路径明显短于SRVCC方案,减少了切换时长。二、VoLTE网络架构1.策略控制单元(PCC)PCC(PolicyandChargingControl策略与计费控制):提供策略控制、计费控制功能、业务数据流的事件报告等功能。包括:PCEF(PolicyandChargingEnforcementFunction策略和计费执行功能):主要包含业务数据流的检测、策略执行和基于流的计费功能。PCRF(PolicyandChargingRuleFunction策略和计费规则功能):包含策略控制决策和基于流计费控制的功能,PCRF接受来自PCEF、SPR和AF的输入,向PCEF提供关于业务数据流检测、门控、基于QoS和基于流计费的网络控制功能。并结结合PCRF的自定义信息做出PCC决策。2.信令网(DRA)DRA(DiameterRoutingAgent路由代理):下一代信令网,可以真正实现未来核心网逐步的扩展,简化网络,实现快速部署、高效维护及增强网络安全。部署DRA的好处:解决移动用户漫游到其他网络时,用户的鉴权、认证、位置登记、计费策略等信息在漫游网络与归属网络之间的传递。在一些业务应用场景中,保证对于同一个用户,AF和PCEF能够寻址到同一个PCRF,通过部署Diameter代理来实现IP地址和IMSI的动态绑定以完成寻址。3.IMS域SBC(SessionBorderControl会话边界控制器):IMS网络中一个重要的网络节点,其位于IMS网络的边界,起着将终端用户接入到IMS核心网的重要作用。它的主要功能包括接入许可控制,网络拓扑隐藏,NAT以及NAT穿越,QoS及带宽策略,和网络安全机制等。S-CSCF(ServingCallSessionControlFunction服务会话控制功能):是IMS的核心所在,它位于归属网络,为UE进行会话控制和注册请求,但当UE处于会话中时,S-CSCF处理网络中的会话状态。在同一个运营商的网络中,可以有多个S-CSCF。P-CSCF(ProxyCallSessionControlFunction代理会话控制功能):是IMS中用户的第一个联系点(在信令平面),从SIP的角度来看,它是一个出站/入站的SIP代理服务器,所有的SIP信令,无论是来自用户设备UE,还是发送给UE的,都必须经过P-CSCF。UE使用本地CSCF发现机制可以获得P-CSCF的地址。P-CSCF负责验证请求,将它转发给指定的目标,并且处理和转发响应。I-CSCF(InterrogatingCallSessionControlFunction协商会话控制功能):I-CSCF是一个运营商网络内部的接触点,所有与这个网络运营商的用户连接都要经过这个实体。在一个网络中可以有多个I-CSCF。MGCF(MultimediaGatewayControlFunction多媒体网关控制功能):在IP多媒体子系统(IMS)的一个组成部分,与CSCF通信和控制媒体信道在一个IMS-MGW中的连接。它在ISDN部分(ISUP)和IMS呼机控制协议之间执行协议转换。IM-MGW(IPMultimediaGatewayIP多媒体网关):IM-MGW负责IMS与PSTN/CS域之间的媒体流互通,提供CSCN网络和IMS之间的用户面链路,支持PSTN/电路域TDM承载和IMS用户IP承载的转换。主要功能是承载和媒体处理。在IMS终端不支持CS端编码时IM-MGW完成编解码的转换工作。IM-MGW也可以在MGCF的控制下完成呼叫的连续。4.VoLTE网络架构接口列表三、VoLTE关键技术ECN(ExplicitCongestionNotification)eNodeB根据空口链路的情况,通知UE,改变语音业务的编码速率,进而提高系统的容量与覆盖范围。ROHC(RadioOverheadCompression)ROHC对各层包头进行压缩,有效地减小包头的大小,提高空口的传输效率。SPS(semipersistentschedule)由于VoLTE语音业务的周期是20ms,且具有一定的规律性。采用SPS半静态调度,对PDCCH所需资源进行分配,可以节约CCE资源,进而提高系统可接入VoLTE用户数。TTIBundlingTTI绑定,或称子帧绑定。为处在小区边缘用户而设计的,是提高用户在小区边缘覆盖的有效方法。1.ROHC(RadioOverheadCompression)由于相邻节点之间,同一数据流连续分组报文头中存在一些不变的冗余信息头和一些有变化规律的动态信息头,即压缩中的静态域和动态域。为了节省空口的带宽资源,可以在数据流开始传递时发送完整报文头部信息,后续数据包信头中只传递报文头部中变化的部分和相对于同一个流的关联标识符,达到缩小数据头的字节数,从而有效利用无线带宽资源。ROHC主要功能是将核心网和UE之间的数据报文的报文头,如IP头、UDP头、RTP头进行压缩后,再进行传输,达到节省空口带宽资源的作用。(1)压缩端原理:在数据流刚开始传递时,ROHC压缩方将完整的信头(即静态域和动态域)保存在本地上下文结构中(Context),后续数据包参照此进行压缩,仅传递变化的值域。并且压缩方为每个Context分配一个标识(CID)标识此数据流。(2)解压端原理:解压缩方接收到新的数据流分组时,将完整的信头保存到本地的上下文中(CID)。只有解压缩方建立了完整的上下文,压缩方才发送压缩分组。在后续数据流传输中,解压缩方根据分组的CID查找相应的上下文进行解压缩。开启ROHC功能,可以节约每个UE占用的空口资源,节省PRB资源,提升小区容量2.SPS(SemiPersistentSchedule)对于VoIP类型的业务,其数据包大小比较固定,到达时间间隔满足一定规律的实时性业务(典型的话音业务周期一般是20ms),针对这种特性,LTE系统引入了半静态调度技术(Semi-PersistentScheduling)。SPS是在指定子帧上按照预先分配的资源进行新传,但重传时为了降低时延,仍然采用动态调度的方式。系统资源(包括上行和下行)是通过PDCCH分配的,UE通过保存相应的资源分配,而后就可以周期性重复使用相同的时频资源。不需要在每个TTI都为UE下发DCI(包括上行或下行的),从而降低了对应的PDCCHCCE资源开销,有效提升了系统效率及容量。VOIP业务采用SPS技术,可以有效的节省CCE资源,提高小区的VOIP用户容量。3.TTIB(TTIBundling)TTIBundling(TTI捆绑或者子帧捆绑)用于提高用户在小区边缘覆盖的一种方法。当TTIBundling使能时,上行调度DCI0一次授权后,在连续的4个上行子帧上传输同一传输块,且仅在第四次传输后有对应的PHICH反馈,重传也是4个连续上行TTI发射的一种调度方法,可以充分利用4个上行子帧发送的数据进行数据合并,通过合并增益提升数据可靠性。由于仅在第四次传输后有对应的PHICH反馈,所以此时反馈的为底层合并后数据的接收效果,从而大大提高的数据的可靠性。TTIB只适用于上行,通常在远点低SINR下被激活,TTI捆绑对TDD仅仅适用于上下行配比为0、1、6的情况。对于上下行1:3配置协议明确不适用TTIbundling技术做补偿增益。VOIP业务采用TTIB技术,可以有效地提高小区的覆盖半径,对于边缘用户上行会有2-3dB的增益。4.DRX(DiscontinuousReception)即非连续接收,是指UE仅在必要的时间段打开接收机进入激活期,以接收下行数据和信令,而在其他时间关闭接收机进入休眠期,停止接收下行数据和信令的一种节省UE电力消耗的工作模式。在DRX工作模式下,DRX周期包含激活期和休眠期,UE的工作状态对应为激活态和休眠态。DRX工作模式下,UE不需要连续侦听PDCCH(PhysicalDownlinkControlChannel)信道,所以节省了UE的电力消耗,延长了UE的使用时间。DRX状态为连续接收态和RRCidle态之间的一个中间状态,DRX状态的存在减少了RRCConnected状态向RRCidle态转换的概率,从而可以减少整个网络的信令开销,此收益在智能UE所占比例较高的网络中效果更为明显。5.eSRVCC语音方案eSRVCC(enhancedSingleRadioVoiceCallContinuity)是SRVCC的增强版本,SRVCC在媒体变更是需要经IMS域进行远端媒体面协商与切换,而eSRVCC不涉及,因此切换过程中的中断时间缩短,性能得以优化。二者均为国际规范,商用部署采用eSRVCC技术。SRVCC技术采用归属地SCCAS网元作为信令/媒体锚点,而在eSRVCC组网中新增加了ATCF(AccessTransferControlFunction)/ATGW(AccessTransferGateway)逻辑网元作为本地信令/媒体锚点,使eSRVCC媒体切换点更靠近本端的设备,经过IMS域的所有会话都锚定在ATCF上,对端设备与ATGW之间的媒体流还是通过原承载通道传输。在呼叫从EPC切换到CS后,EnhancedMSC和ATCF交互,完成会话切换SRVCC语音切换方

1 / 17
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功