勾股定理导学案

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

118.1勾股定理(3)编制人:肖利秋审核人:使用人学习目标:能利用勾股定理,根据已知直角三角形的两边长求第三条边长;并在数轴上表示无理数。重点:利用勾股定理在数轴上表示无理数。难点:确定以无理数为斜边的直角三角形的两条直角边长。一、预习新知(阅读教材第26至27页,并完成预习内容。)1.探究:我们知道数轴上的点有的表示有理数,有的表示无理数,你能在数轴上画出表示13的点吗?分析:容易知道,长为2的线段是两条直角边都为______的直角边的斜边。利用勾股定理,可以发现,长为13的线段是直角边为正整数_____、______的直角三角形的斜边。2.作法:在数轴上找到点A,使OA=_____,作直线l垂直于OA,在l上取点B,使AB=_____,以原点O为圆心,以OB为半径作弧,弧与数轴的交点C即为表示13的点。试一试1.在数轴上画出表示17的点?(尺规作图)二、课堂展示例1:已知:如图,等边△ABC的边长是6cm。⑴求等边△ABC的高。⑵求S△ABC。DCBA2三、随堂练习1.填空题⑴在Rt△ABC,∠C=90°,a=8,b=15,则c=。⑵在Rt△ABC,∠B=90°,a=3,b=4,则c=。⑶在Rt△ABC,∠C=90°,c=10,a:b=3:4,则a=,b=。(4)已知直角三角形的两边长分别为3cm和5cm,,则第三边长为。2.已知等腰三角形腰长是10,底边长是16,求这个等腰三角形面积。四、课堂检测1.已知直角三角形中30°角所对的直角边长是32cm,则另一条直角边的长是()A.4cmB.34cmC.6cmD.36cm2.△ABC中,AB=15,AC=13,高AD=12,则△ABC的周长为()A.42B.32C.42或32D.37或333.一架25分米长的梯子,斜立在一竖直的墙上,这时梯足距离墙底端7分米.如果梯子的顶端沿墙下滑4分米,那么梯足将滑动()A.9分米B.15分米C.5分米D.8分米4.如图,学校有一块长方形花铺,有极少数人为了避开拐角走“捷径”,在花铺内走出了一条“路”.他们仅仅少走了步路(假设2步为1米),却踩伤了花草.5.等腰△ABC的腰长AB=10cm,底BC为16cm,则底边上的高为,面积为.6.一个直角三角形的三边为三个连续偶数,则它的三边长分别为.7.已知:如图,四边形ABCD中,AD∥BC,AD⊥DC,AB⊥AC,∠B=60°,CD=1cm,求BC的长。五、小结与反思“路”4m3mBCDA3图18.2-218.2勾股定理的逆定理(一)编制人:肖利秋审核人:使用人学习目标1.体会勾股定理的逆定理得出过程,掌握勾股定理的逆定理。2.探究勾股定理的逆定理的证明方法。3.理解原命题、逆命题、逆定理的概念及关系。重点:掌握勾股定理的逆定理及简单应用。难点:勾股定理的逆定理的证明。一、预习新知(阅读教材P31—33,完成课前预习)1.三边长度分别为3cm、4cm、5cm的三角形与以3cm、4cm为直角边的直角三角形之间有什么关系?你是怎样得到的?2.如图18.2-2,若△ABC的三边长a、b、c满足222cba、试证明△ABC是直角三角形,请简要地写出证明过程.3.此定理与勾股定理之间有怎样的关系?(1)什么叫互为逆命题(2)什么叫互为逆定理(3)任何一个命题都有_____,但任何一个定理未必都有__试一试1.说出下列命题的逆命题。这些命题的逆命题成立吗?①两直线平行,内错角相等;②如果两个实数相等,那么它们的绝对值相等;③全等三角形的对应角相等;④角的内部到角的两边距离相等的点在角的平分线上。二、课堂展示例1:判断由线段a、b、c组成的三角形是不是直角三角形:(1)17,8,15cba;(2)15,14,13cba.4三、随堂练习1.如果三条线段长a,b,c满足222bca,这三条线段组成的三角形是不是直角三角形?为什么?2.A,B,C三地的两两距离如图所示,A地在B地的正东方向,C地在B地的什么方向?思考:我们知道3、4、5是一组勾股数,那么3k、4k、5k(k是正整数)也是一组勾股数吗?一般地,如果a、b、c是一组勾股数,那么ak、bk、ck(k是正整数)也是一组勾股数吗?四、课堂检测1.若△ABC的三边a,b,c满足条件a2+b2+c2+338=10a+24b+26c,试判定△ABC的形状.2.一根24米绳子,折成三边为三个连续偶数的三角形,则三边长分别为多少米?此三角形的形状为?五、小结与反思13km12km5kmBAC5图18.2-318.2勾股定理逆定理(2)编制人:肖利秋审核人:使用人学习目标:进一步掌握勾股定理的逆定理,并会应用勾股定理的逆定理判断一个三角形是否是直角三角形,能够理解勾股定理及其逆定理的区别与联系,掌握它们的应用范围。重点:勾股定理的逆定理难点:勾股定理的逆定理的应用一、合作探究探究(一)例1:“远航”号、“海天”号轮船同时离开港口,各自沿一固定方向航行,“远航”号每小时航、行16海里,“海天”号每小时航行12海里,它们离开港口一个半小时后相距30海里.如果知道“远航”号沿东北方向航行,能知道“海天”号沿哪个方向航行吗?探究(二):已知:如图,四边形ABCD,AD∥BC,AB=4,BC=6,CD=5,AD=3求:四边形ABCD的面积。归纳:求不规则图形的面积时,要把不规则图形例2::如图,小明的爸爸在鱼池边开了一块四边形土地种了一些蔬菜,爸爸让小明计算一下土地的面积,以便计算一下产量。小明找了一卷米尺,测得AB=4米,BC=3米,CD=13米,DA=12米,又已知∠B=90°。二、随堂练习1.一个三角形三边之比为3:4:5,则这个三角形三边上的高值比为A3:4:5B5:4:3C20:15:12D10:8:22.如果△ABC的三边a,b,c满足关系式182ba+(b-18)2+30c=0则△ABC是_______三角形。ABCDEDCAB6三、课堂检测1.若△ABC的三边a、b、c,满足(a-b)(a2+b2-c2)=0,则△ABC是()A.等腰三角形B.直角三角形;C.等腰三角形或直角三角形;D.等腰直角三角形。2.小强在操场上向东走80m后,又走了60m,再走100m回到原地。小强在操场上向东走了80m后,又走60m的方向是。3.若△ABC的三边a、b、c,满足a:b:c=1:1:2,试判断△ABC的形状。4.已知:如图,四边形ABCD,AB=1,BC=43,CD=413,AD=3,且AB⊥BC。求:四边形ABCD的面积。5.一根30米长的细绳折成3段,围成一个三角形,其中一条边的长度比较短边长7米,比较长边短1米,请你试判断这个三角形的形状。6.已知△ABC的三边为a、b、c,且a+b=4,ab=1,c=14,试判定△ABC的形状。7.如图,在正方形ABCD中,F为DC的中点,E为BC上一点且EC=41BC,求证∠EFA=90。.五、小结与反思ABCD7勾股定理复习(1)编制人:肖利秋审核人:使用人学习目标1.理解勾股定理的内容,已知直角三角形的两边,会运用勾股定理求第三边.2.勾股定理的应用.3.会运用勾股定理的逆定理,判断直角三角形.重点:掌握勾股定理及其逆定理.难点:理解勾股定理及其逆定理的应用.一、复习回顾在本章中,我们探索了直角三角形的三边关系,并在此基础上得到了勾股定理,并学习了如何利用拼图验证勾股定理,介绍了勾股定理的用途;本章后半部分学习了勾股定理的逆定理以及它的应用.其知识结构如下:1.勾股定理:(1)直角三角形两直角边的______和等于_______的平方.就是说,对于任意的直角三角形,如果它的两条直角边分别为a、b,斜边为c,那么一定有:————————————.这就是勾股定理.(2)勾股定理揭示了直角三角形___之间的数量关系,是解决有关线段计算问题的重要依据.22222222,,bacacbbca,2222,acbbca.勾股定理的探索与验证,一般采用“构造法”.通过构造几何图形,并计算图形面积得出一个等式,从而得出或验证勾股定理.2.勾股定理逆定理“若三角形的两条边的平方和等于第三边的平方,则这个三角形为________.”这一命题是勾股定理的逆定理.它可以帮助我们判断三角形的形状.为根据边的关系解决角的有关问题提供了新的方法.定理的证明采用了构造法.利用已知三角形的边a,b,c(a2+b2=c2),先构造一个直角边为a,b的直角三角形,由勾股定理证明第三边为c,进而通过“SSS”证明两个三角形全等,证明定理成立.3.勾股定理的作用:(1)已知直角三角形的两边,求第三边;(2)在数轴上作出表示n(n为正整数)的点.勾股定理的逆定理是用来判定一个三角形是否是直角三角形的.勾股定理的逆定理也可用来证明两直线是否垂直,勾股定理是直角三角形的性质定理,而勾股定理的逆定理是直角三角形的判定定理,它不仅可以判定三角形是否为直角三角形,还可以判定哪一个角是直角,从而产生了证明两直线互相垂直的新方法:利用勾股定理的逆定理,通过计算来证明,体现了数形结合的思想.8(3)三角形的三边分别为a、b、c,其中c为最大边,若222cba,则三角形是直角三角形;若222cba,则三角形是锐角三角形;若cba22,则三角形是钝角三角形.所以使用勾股定理的逆定理时首先要确定三角形的最大边.二、课堂展示例1:如果一个直角三角形的两条边长分别是6cm和8cm,那么这个三角形的周长和面积分别是多少?例2:如图,在四边形ABCD中,∠C=90°,AB=13,BC=4,CD=3,AD=12,求证:AD⊥BD.三、随堂练习1.如果下列各组数是三角形的三边,那么不能组成直角三角形的一组数是()A.7,24,25B.321,421,521C.3,4,5D.4,721,8212.如果把直角三角形的两条直角边同时扩大到原来的2倍,那么斜边扩大到原来的()A.1倍B.2倍C.3倍D.4倍3.三个正方形的面积如图1,正方形A的面积为()A.6B.36C.64D.84.直角三角形的两直角边分别为5cm,12cm,其中斜边上的高为()A.6cmB.8.5cmC.1330cmD.1360cm5.在△ABC中,三条边的长分别为a,b,c,a=n2-1,b=2n,c=n2+1(n>1,且n为整数),这个三角形是直角三角形吗?若是,哪个角是直角四、课堂检测1.两只小鼹鼠在地下打洞,一只朝前方挖,每分钟挖8cm,另一只朝左挖,每分钟挖6cm,10分钟之后两只小鼹鼠相距()A.50cmB.100cmC.140cmD.80cm图1A1006492.小明想知道学校旗杆的高,他发现旗杆上的绳子垂到地面还多1m,当它把绳子的下端拉开5m后,发现下端刚好接触地面,则旗杆的高为()A.8cmB.10cmC.12cmD.14cm3.在△ABC中,∠C=90°,若a=5,b=12,则c=___4.等腰△ABC的面积为12cm2,底上的高AD=3cm,则它的周长为___.5.等边△ABC的高为3cm,以AB为边的正方形面积为___.6.一个三角形的三边的比为5∶12∶13,它的周长为60cm,则它的面积是___7.有一个小朋友拿着一根竹竿要通过一个长方形的门,如果把竹竿竖放就比门高出1尺,斜放就恰好等于门的对角线长,已知门宽4尺.求竹竿高与门高.8.如图3,台风过后,一希望小学的旗杆在离地某处断裂,旗杆顶部落在离旗杆底部8m处,已知旗杆原长16m,你能求出旗杆在离底部什么位置断裂的吗?五、小结与反思8m图310勾股定理复习(2)编制人:肖利秋审核人:使用人学习目标1.掌握直角三角形的边、角之间所存在的关系,熟练应用直角三角形的勾股定理和逆定理来解决实际问题.2.经历反思本单元知识结构的过程,理解和领会勾股定理和逆定理.3.熟悉勾股定理的历史,进一步了解我国古代数学的伟大成就,激发爱国主义思想,培养良好的学习态度.重点:掌握勾股定理以及逆定理的应用.难点:应用勾股定理以及逆定理.一、考点解析考点一:已知两边求第三边1.在直角三角形中,若两直角边的长分别

1 / 12
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功