-1-八年级上册数学期末考试卷①一.仔细选一选(本题有10个小题,每小题3分,共30分)1.下列各组数可能是一个三角形的边长的是A.1,2,4B.4,5,9C.4,6,8D.5,5,112.若x>y,则下列式子错误的是A.x﹣1>y﹣1B.﹣3x>﹣3yC.x+1>y+1D.3.一副三角板如图叠放在一起,则图中∠α的度数为A.75°B.60°C.65°D.55°4.如图,△ABC中,AB=AC,∠A=36°,BD是AC边上的高,则∠DBC的度数是A.18°B.24°C.30°D.36°5.如图,在边长为1的正方形网格中,将△ABC先向右平移两个单位长度,再关于x轴对称得到△A′B′C′,则点B′的坐标是A.(0,﹣1)B.(1,1)C.(2,﹣1)D.(1,﹣2)6.如图,△ABC中,D为AB中点,E在AC上,且BE⊥AC.若DE=5,AE=8,则BE的长度是A.5B.5.5C.6D.6.57.一次函数y=mx+|m﹣1|的图象过点(0,2),且y随x的增大而增大.....,则m=A.﹣1B.3C.1D.﹣1或38.如图,已知△ABC中,∠ABC=45°,AC=4,H是高AD和BE的交点,则线段BH的长度为A.B.4C.D.59.如图,在平面直角坐标系中,以O为圆心,适当长为半径画弧,交x轴于点M,交y轴于点N,再分别以点M、N为圆心,大于MN的长为半径画弧,两弧在第二象限交于点P.若点P的坐标为(2x,y+1),则y关于x的函数关系为(第3题)(第4题)(第5题)(第6题)-2-A.y=xB.y=-2x﹣1C.y=2x﹣1D.y=1-2x10.如图,O是正△ABC内一点,OA=3,OB=4,OC=5,将线段BO以点B为旋转中心逆时针旋转60°得到线段BO′,下列结论:①△BO′A可以由△BOC绕点B逆时针旋转60°得到;②点O与O′的距离为4;③∠AOB=150°;④S四边形AOBO′=6+3;⑤S△AOC+S△AOB=6+.其中正确的结论是A.①②③⑤B.①③④C.②③④⑤D.①②⑤二.认真填一填(本题有6个小题,每小题4分,共24分)11.已知点A(m,3)与点B(2,n)关于y轴对称,则m=▲,n=▲.12.“直角三角形只有两个锐角”的逆命题是▲,该逆命题是一个▲命题(填“真”或“假”)13.已知关于x的不等式(1﹣a)x>2的解集为x<,则a的取值范围是▲.14.直线l1:y=k1x+b与直线l2:y=k2x+c在同一平面直角坐标系中的图象如图所示,则关于x的不等式k1x+b<k2x+c的解集为▲.15.如图,在Rt△ABC中,∠A=90°,∠ABC的平分线BD交AC于点D,AD=3,BC=10,则△BDC的面积是▲.16.如图,直线y=﹣x+8与x轴,y轴分别交于点A和B,M是OB上的一点,若将△ABM沿AM折叠,点B恰好落在x轴上的点B′处,则直线AM的解析式为▲.三.全面答一答(本题有7个小题,共66分)17.(本小题满分6分)如图,AB=AC,请你添加一个条件,使△ABE≌△ACD,(1)你添加的条件是;(第17题)(第16题)(第14题)(第15题)(第8题)(第9题)(第10题)-3-(2)根据上述添加的条件证明△ABE≌△ACD.18.(本小题满分8分)解下列不等式和不等式组(1)2(x+1)>3x﹣4(2)19.(本小题满分8分)如图,△ABC是边长为2的等边三角形,将△ABC沿直线BC向右平移,使点B与点C重合,得到△DCE,连接BD,交AC于点F.(1)猜想AC与BD的位置关系....,并证明你的结论;(2)求线段BD的长.20.(本小题满分10分)如图,有8×8的正方形网格,按要求操作并计算.(1)在8×8的正方形网格中建立平面直角坐标系,使点A的坐标为(2,4),点B的坐标为(4,2);(2)将点A向下平移5个单位,再关于y轴对称得到点C,(第18题)A.B.-4-求点C坐标;(3)画出三角形ABC,并求其面积.21.(本小题满分10分)某文具店准备拿出1000元全部用来购进甲、乙两种钢笔,若甲种钢笔每支10元,乙种钢笔每支5元,考虑顾客需求,要求购进乙种钢笔的数量不少于甲种钢笔数量的6倍,且甲种钢笔数量不少于20支.若设购进甲种钢笔x支.(1)该文具店共有几种进货方案?(2)若文具店销售每支甲种钢笔可获利润3元,销售每支乙种钢笔可获利润2元,在第(1)问的各种进货方案中,哪一种方案获利最大?最大利润是多少元?22.(本小题满分12分)如图,△ABC是边长为4cm的等边三角形,点P,Q分别从顶点A,B同时出发,沿线.段.AB,BC运动,且它们的速度都为1cm/s.当点P到达点B时,P、Q两点停止运动.设点P的运动时间为t(s),(1)当t为何值时,△PBQ是直角三角形?-5-(2)连接AQ、CP,相交于点M,则点P,Q在运动的过程中,∠CMQ会变化吗?若变化,则说明理由;若不变,请求出它的度数.23.(本小题满分12分)如图,直线y=kx﹣3与x轴、y轴分别交于B、C两点,且.(1)求点B坐标和k值;(2)若点A(x,y)是直线y=kx﹣3上在第一象限内的一个动点,当点A在运动过程中,试写出△AOB的面积S与x的函数关系式(不要求写自变量范围);并进一步求出点A的坐标为多少时,△AOB的面积为;(3)在上述条件下,x.轴上..是否存在点P,使△AOP为等腰三角形?若存在,请写出满足条件的所有P点坐标;若不存在,请说明理由.(第23题)(第22题)-6-参考解答和评分标准一、选择题(每题3分,共30分)题号12345678910答案CBAADCBBBA二、填空题(每题4分,共24分)11.-23;12.只有两个锐角的三角形是直角三角形假;13.a>1;14.x<1;15.1516.y=﹣x+3三、解答题(共66分)17.(本小题满分6分)解:(1)添加的条件是∠B=∠C或AE=AD(2)添加∠B=∠C或AE=AD后可分别根据ASA、SAS判定△ABE≌△ACD.18.(本小题满分8分)解:(1)x<6(2)-0.5<x<219.(本小题满分8分)解:(1)AC与BD的位置关系是:AC⊥BD.∵△DCE由△ABC平移而成,∴BE=2BC=4,DE=AC=2,∠E=∠ACB=60°,(第18题图)-7-∴DE=BE,∴BD⊥DE,又∵∠E=∠ACB=60°,∴AC∥DE,∴BD⊥AC,∵△ABC是等边三角形,∴BF是边AC的中线,∴BD⊥AC,BD与AC互相垂直平分;(2)∵由(1)知,AC∥DE,BD⊥AC,∴△BED是直角三角形,∵BE=4,DE=2,∴BD==2.20.(本小题满分10分)解:(1)略(2)点C(-2,-1)(3)S=5×6—6×3÷2—4×5÷2—2×2÷2=921.(本小题满分10分)解:(1)设购进甲钢笔x支,乙钢笔y支,根据题意可得:10x+5y=10006x≤y20≤x解得:20≤x≤25,∵x为整数,∴x=20,21,22,23,24,25共六种方案,∴该文具店共有6种进货方案;(2)设利润为W元,则W=3x+2y,∵10x+5y=1000,∴y=200﹣2x,-8-∴代入上式得:W=400﹣x,∵W随着x的增大而减小,∴当x=20时,W有最大值,最大值为W=400﹣20=380(元).22.(本小题满分12分)解:(1)设时间为t,则AP=BQ=t,PB=4﹣t①当∠PQB=90°时,∵∠B=60°,∴PB=2BQ,得4﹣t=2t,t=;②当∠BPQ=90°时,∵∠B=60°,∴BQ=2BP,得t=2(4﹣t),t=;∴当第秒或第秒时,△PBQ为直角三角形.(2)∠CMQ=60°不变.∵等边三角形中,AB=AC,∠B=∠CAP=60°又由条件得AP=BQ,∴△ABQ≌△CAP(SAS),∴∠BAQ=∠ACP,∴∠CMQ=∠ACP+∠CAM=∠BAQ+∠CAM=∠BAC=60°.23.(本小题满分12分)解:解:(1)在y=kx﹣3中,令x=0,则y=﹣3,故C的坐标是(0,﹣3),OC=3,∵=,∴OB=,则B的坐标是:(,0),把B的坐标代入y=kx﹣3,得:k﹣3=0,解得:k=2;(2)OB=,则S=×(2x﹣3)=x﹣;-9-根据题意得:x﹣=,解得:x=3,则A的坐标是(3,3);(3)当O是△AOP的顶角顶点时,P的坐标是(﹣3,0)或(3,0);当A是△AOP的顶角顶点时,P的坐标是(6,0);当P是△AOP的顶角顶点时,P的坐标是(,0).故P的坐标是:(﹣3,0)或(3,0)或(6,0)或(,0).