第1页(共24页)2016-2017学年浙江省杭州市上城区八年级(上)期末数学试卷一、仔细选一选1.若点P的坐标是(1,﹣2),则点P在()A.第一象限B.第二象限C.第三象限D.第四象限2.做一个三角形的木架,以下四组木棒中,符合条件的是()A.1cm,2cm,3.5cmB.3cm,4cm,6cmC.4cm,5cm,9cmD.3cm,3cm,6cm3.若a<b,则下列各式中一定正确的是()A.a﹣b>0B.a+b>0C.ab>0D.﹣a>﹣b4.如图,在△ABC中,∠B=70°,D为BC上的一点,若∠ADC=2x,则x的度数可能为()A.30B.60C.90D.1005.若一次函数y=kx+2经过点(﹣1,1),则下面说法正确的是()A.y随x的增大而减小B.图象经过点(3,﹣1)C.图象不经过第二象限D.图象与函数y=﹣x图象有一个交点6.如图,在△ABC中,∠ABC=90°,∠C=20°,DE是边AC的垂直平分线,连结AE,则∠BAE等于()A.20°B.40°C.50°D.70°7.下列命题中,真命题是()第2页(共24页)A.底边对应相等的两个等腰三角形全等B.腰对应相等的两个等腰三角形全等C.斜边对应相等的两个直角三角形全等D.面积相等的两个等边三角形全等8.已知函数y=kx+b(k≠0)的图象如图,则y=﹣2kx+b(k≠0)的图象可能是()A.B.C.D.9.如图(1),在Rt△ABC中,∠ACB=90°,D是斜边AB的中点,动点P从B点出发,沿B→C→A运动,设S△DPB=y,点P运动的路程为x,若y与x之间的函数图象如图(2)所示,则AC的长为()A.14B.7C.4D.210.如图,在△ABC中,∠ACB=90°,AC=BC=4,D为BC的中点,DE⊥AB,垂足为E.过点B作BF∥AC交DE的延长线于点F,连接CF,AF.现有如下结论:第3页(共24页)①AD平分∠CAB;②BF=2;③AD⊥CF;④AF=2√5;⑤∠CAF=∠CFB.其中正确的结论有()A.5个B.4个C.3个D.2个二、认真填一填11.点P(3,2)向左平移2个单位后的点坐标为.12.如图,一名滑雪运动员沿着倾斜角为30°的斜坡,从A滑至B.已知AB=200m,这名滑雪运动员的高度下降了m.13.证明“√𝑎2=a(a为实数)”是假命题的一个反例是.14.不等式7x﹣2≤9x+1的负整数解为.15.已知x满足﹣5≤x≤5,函数y1=x+1,y2=﹣2x+4,对任意一个x,对应的y1,y2中的较小值记作m,则m的最大值是.16.如图,在平面直角坐标系中,A,B两点的坐标分别为(﹣4,0),(0,3),连接AB.点P在第二象限,若以点P,A,B为顶点的三角形是等腰直角三角形,则点P坐标为.三、全面答一答第4页(共24页)17.解一元一次不等式组{3𝑥−8<𝑥1−𝑥2≤1+2𝑥3−1,并把解集在数轴上表示出来.18.如图,△ABC中,AB=AC.(1)请利用直尺和圆规作∠BAC的平分线,交BC于点D.(2)若AB=10,AD=6,求BC的长.19.如图所示,一张建立了平面直角坐标系的图纸被损坏,所幸有两个标志点A(0,2),B(0,﹣3)清晰可见.(1)若点C在点A的南偏东45°方向,距离A点3√2个单位,请在图中标出点C的位置,并写出点C坐标.(2)连结AB,AC,BC,问:△ABC是直角三角形吗,请说明理由.20.初二(1)班对数学期末总评成绩规定如下:总评成绩由考试成绩和平时成绩(满分120分)两部分组成,期中考试成绩占80%,平时成绩占20%,且总评成绩大于或等于100分时,该生综合评定为A等.(1)小敏的考试成绩为90分,它的综合评定有可能达到A等吗?为什么?(2)小浩的平时成绩为120分,综合评定若要达到A等,他的考试成绩至少要多少分?21.如图,在△ABC中,D,E分别是AB,AC边上的点,且∠1=∠2,CD=BE.CD与BE相交于点O.求证:(1)AB=AC.第5页(共24页)(2)OB=OC.22.某校八年级举行演讲比赛,购买A,B两种笔记本作为奖品,这两种笔记本的单价分别为12元和8元.根据比赛设奖情况,需购买两种笔记本共30本,并且购买A笔记本的数量要少于B笔记本数量的23,但又不少于B笔记本数量的13.设买A种笔记本n本,买两种笔记本的总费用为W元.(1)请写出W(元)关于n(本)的函数关系式,并求出自变量n的取值范围.(2)购买这两种笔记本各多少本时,花费最少?此时的花费是多少元?23.如图,直线l:y=﹣0.5x+2与x轴、y轴相交于点A,B.OC是∠AOB的角平分线.(1)求点A,点B的坐标.(2)求线段OC的长.(3)点P在直线CO上,过点P作直线m(不与直线l重合),与x轴,y轴分别交于点M,N,若△OMN与△ABO全等,求出点P坐标.第6页(共24页)2016-2017学年浙江省杭州市上城区八年级(上)期末数学试卷参考答案与试题解析一、仔细选一选1.若点P的坐标是(1,﹣2),则点P在()A.第一象限B.第二象限C.第三象限D.第四象限【分析】根据各象限内点的坐标特征解答即可.【解答】解:点P(1,﹣2)在第四象限.故选D.【点评】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).2.做一个三角形的木架,以下四组木棒中,符合条件的是()A.1cm,2cm,3.5cmB.3cm,4cm,6cmC.4cm,5cm,9cmD.3cm,3cm,6cm【分析】三角形的任意两边的和大于第三边,根据三角形的三边关系就可以求解.【解答】解:根据三角形的三边关系,知:A中,1+2<3.5,排除;B中,3+4>6,可以;C中,5+4=9,排除;D中,3+3=6,排除.故选:B.【点评】本题主要考查了三角形的三边关系,在运用三角形三边关系判定三条线段能否构成三角形时,只要两条较短的线段长度之和大于第三条线段的长度即可判定这三条线段能构成一个三角形.3.若a<b,则下列各式中一定正确的是()第7页(共24页)A.a﹣b>0B.a+b>0C.ab>0D.﹣a>﹣b【分析】根据不等式的性质,可得答案.【解答】解:A、两边都减同一个整式,不等号的方向不变,故A不符合题意;B、两边加不同的整式,故B不符合题意;C、两边乗不同的整式,故C不符合题意;D、两边都乘以﹣1,不等号的方向改变,故D符合题意;故选:D.【点评】本题考查了不等式的性质,熟记不等式的性质是解题关键,注意不等式的两边都乘以(或除以)同一个负数,不等号的方向改变.4.如图,在△ABC中,∠B=70°,D为BC上的一点,若∠ADC=2x,则x的度数可能为()A.30B.60C.90D.100【分析】根据三角形的外角的性质得到∠ADC=∠B+∠BAD,得到2x>70,根据平角的概念得到2x<180,计算后进行判断得到答案.【解答】解:∵∠ADC=∠B+∠BAD,∴2x>70,解得,x>35,又2x<180,解得,x<90,故选:B.【点评】本题考查的是三角形的外角的性质,掌握三角形的一个外角等于和它不相邻的两个内角的和是解题的关键.5.若一次函数y=kx+2经过点(﹣1,1),则下面说法正确的是()A.y随x的增大而减小第8页(共24页)B.图象经过点(3,﹣1)C.图象不经过第二象限D.图象与函数y=﹣x图象有一个交点【分析】根据点的坐标利用待定系数法求出一次函数解析式,再逐一分析四个选项的正误,由此即可得出结论.【解答】解:将(﹣1,1)代入y=kx+2中,1=﹣k+2,解得:k=1,∴一次函数解析式为y=x+2.A、∵1>0,∴一次函数y=x+2中y随x的增大而增大,A结论错误;B、当x=3时,y=3+2=5,∴一次函数y=x+2的图象经过点(3,5),B结论错误;C、∵k=1>0,b=2>0,∴一次函数y=x+2的图象经过第一、二、三象限,C结论错误;D、∵直线y=x+2与y=﹣x不平行,∴一次函数y=x+2的图象与函数y=﹣x图象有一个交点,D结论正确.故选D.【点评】本题考查了待定系数法求一次函数解析式、一次函数的性质、两直线相交或平行以及一次函数图象与系数的关系,根据点的坐标利用待定系数法求出一次函数解析式是解题的关键.6.如图,在△ABC中,∠ABC=90°,∠C=20°,DE是边AC的垂直平分线,连结AE,则∠BAE等于()A.20°B.40°C.50°D.70°【分析】根据三角形的内角和定理求出∠BAC,根据线段垂直平分线的性质得到EC=EA,求出∠EAC,计算即可.第9页(共24页)【解答】解:∵∠ABC=90°,∠C=20°,∴∠BAC=70°,∵DE是边AC的垂直平分线,∴EC=EA,∴∠EAC=∠C=20°,∴∠BAE=∠BAC﹣∠EAC=50°,故选:C.【点评】本题考查的是线段垂直平分线的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.7.下列命题中,真命题是()A.底边对应相等的两个等腰三角形全等B.腰对应相等的两个等腰三角形全等C.斜边对应相等的两个直角三角形全等D.面积相等的两个等边三角形全等【分析】利用等腰三角形全等的判定、直角三角形全等的判定等知识分别判断后即可确定正确的选项.【解答】解:A、底边对应相等的两个三角形不一定全等,故错误,是假命题;B、腰对应相等的两个等腰三角形的底边不一定对应相等,故错误,是假命题;C、斜边对应相等的两个直角三角形的两条直角边不一定对应相等,故错误,是假命题;D、面积相等的两个等边三角形全等,正确,是真命题,故选D.【点评】此题考查了命题与定理的知识,解题的关键是了解如何证明两个三角形全等,难度不大.8.已知函数y=kx+b(k≠0)的图象如图,则y=﹣2kx+b(k≠0)的图象可能是()第10页(共24页)A.B.C.D.【分析】根据函数y=kx+b(k≠0)的图象即可得出b=1、k<﹣1,再根据一次函数图象上点的坐标特征即可得出一次函数y=﹣2kx+b(k≠0)的图象与y轴的交点坐标以及与x轴交点的大致范围,对照四个选项即可得出结论.【解答】解:将(0,1)代入y=kx+b,b=1;当x=1时,y=kx+1<0,∴k<﹣1.在一次函数y=﹣2kx+b中,当x=0时,y=b=1,∴一次函数y=﹣2kx+b与y轴的交点为(0,1);当y=﹣2kx+b=0时,x=12𝑘,∵k<﹣1,∴﹣12<12𝑘<0,∴一次函数y=﹣2kx+b与x轴的交点横坐标在﹣12和0之间.故选C.【点评】本题考查了一次函数的图象以及一次函数图象上点的坐标特征,根据一第11页(共24页)次函数的图象找出b=1、k<﹣1是解题的关键.9.如图(1),在Rt△ABC中,∠ACB=90°,D是斜边AB的中点,动点P从B点出发,沿B→C→A运动,设S△DPB=y,点P运动的路程为x,若y与x之间的函数图象如图(2)所示,则AC的长为()A.14B.7C.4D.2【分析】根据题意可以得到BC和AC的长,根据直角三角形的面积的求法即可求得其面积.【解答】解:由题意可知,当点P从点B运动到点C时,面积达到最大,当运动到点A时,面积变为0,由图(2)可知,BC=7.由S△ABC=2S△DCB=2×7=14,S△ABC=12AC•BC=14,解得AC=4.故选:C.【点评】本题考查了动点问题的函数图象,要能根据函数图象的性质和图象上的数据分析得出函数的类型和所需要的条件,结合实际意义得到正确的结论.10.如图,在△ABC中,∠ACB=90°,AC=BC=4,D为BC的中点,DE⊥AB,垂足为E.过点B作BF∥AC交DE的延长线于点F,连接CF,AF.现有如下结论:①AD平分∠CAB;②BF=2;③AD⊥CF;④AF=2√5;⑤∠CAF=∠CFB.其中正确的结论有()第12页(共24页)A.5个B.4个C.3个D.2个【分析】①错误.由CD=DB,推出AD是△ACB