Eoeaa纳米生物材料的合成组装及在生物医学领域的应用

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

秋风清,秋月明,落叶聚还散,寒鸦栖复惊。项目名称:纳米生物材料的合成、组装及在生物医学领域的应用首席科学家:李峻柏国家纳米科学中心起止年限:2009.1至2013.8依托部门:中国科学院1一、研究内容拟解决的关键科学问题本项目研究的主要关键科学问题是:通过模拟生物膜的结构与功能,利用分子组装技术制备具有纳米孔隙的生物材料,研究它们在生物体中的兼容性,作为药物支架如何担载和释放药物及在体外的稳定性,确定其作用机理和影响因素;探索组装的生物材料在生物体中的状态与排除功能,建立合成体系与生物体之间的联系与作用机制,研究其代谢过程,具体地:1.通过模拟生物膜(生物相容的磷脂/蛋白质复合双层囊泡)研究和揭示细胞膜和其它生物膜的精细结构、生物功能及其相互关系;2.分子组装,纳米模板合成和气/液界面相分离等组装单元的结构特征、组装过程、驱动力、影响因素和调控技术;3.处于这些组装体中的生物活性物质的状态和功能评价,它们与组装体之间的相互作用和影响,寻求保持其生物活性的措施;4.这些具有生物功能的组装体进入人体后的有益效果、作用机制、代谢过程和可能危害。考虑到各课题研究的具体对象、问题和目标不同,除上述共同的关键科学问题外,还各有其特殊的科学和技术问题要解决:1.纳米孔隙的药物载体:构造生物兼容、生物降解的多功能化胶囊,包裹不同类型药物的最佳方法及药物的缓释;生物界面化胶囊及包裹药物胶囊的靶向释放,不同的类型中空胶囊作为药物和基因载体;智能化微胶囊的构造以及可控性研究;负载药物微胶囊的体外细胞试验及动物试验;多功能微胶囊用于药物载体的包裹和释放机理研究。2.红血球替代物聚合物/血红蛋白纳米胶束(胶囊):官能化乳酸共聚物的设计与合成,保证在水环境中实现自组装形成纳米胶束或胶囊;引入含有易与血红蛋白反应的官能团,保证反应不影响血红蛋白中的血红素活性中心;反应基团有足够数量,保证组装体中有足够的血红蛋白浓度;构筑聚合物/2血红蛋白纳米胶束或胶囊的尺寸满足实际要求;在化学键合和胶束化、胶囊化的过程中血红蛋白不变性,血红素结构和功能不受干扰。3.规则纳米多孔薄膜及其生物功能:发展多层次多尺寸的“规则纳米多孔薄膜”的可控制备方法;制备可用于病菌群强力繁殖、富集(、分离和探测高灵敏度传感器)的有序孔隙或中空结构功能材料;阐明此类材料与细菌群的生物作用原理。4.生物模板法合成新型纳米生物医用材料:以特定的客体基质(纳米尺度生物相容无机介质和有机物质)在纳米以至更精确的层次上忠实地复制从生物材料到生物组织和细胞等的生物物质的结构和形貌;并以此为基础设计和开发稳定低毒副作用的具有高度选择性的药物运载、传输和释放系统。主要研究内容为了解决上述科学和技术问题,本项目的主要研究内容包括:1.运用分子组装、生物模板合成与气/液界面分离等技术,构筑纳米尺度的胶束、胶囊、中空管和多孔薄膜等复合生物材料;2.研究这些纳米生物材料的体外稳定性,生物毒性和体内可降解性;3.光敏性药物的筛选及以这些组装体为载体的生物功能,探索它们在生物体中的行为与功能,特别研制开发新型表浅治疗的新制剂和红血球等替代材料。具体研究内容是:1.纳米孔隙的药物载体:1.1智能仿生胶囊的制备与调控本研究将在已有研究工作基础上,利用各种不同的分子间弱相互作用如静电、氢键、配位键、疏水作用、范德华力等,以纳米到微米尺寸范围的粒子作为模板,制备不同尺寸范围可生物降解的微胶囊。通过控制组装的层数和改变组装条件,如pH、温度、离子强度等对囊壁的结构、形貌、渗透率、力学强度等重要参数进行精确控制,实现对胶囊渗透性的调控。利用自沉积技术和环境调控开关特性将药物选择、高效的包埋到胶囊中,研究其包埋的效率和机理。通过组装3单元的选择,发展对外部条件(如光、电、磁、温度等)敏感和响应的智能胶囊。对胶囊的生物界面进行化修饰和某些活性蛋白的包裹,研究胶囊的靶向和可控释放,阐明药物的释放动力学与释放机理。1.2纳米孔隙的药物载体在光动力学疗法中的应用利用组装的中空胶囊可控的空隙结构以及智能化的特点,包埋疏水性光动力学疗法(PDT)药物。调控中空胶囊的形状、大小和渗透性,使得纳米孔隙可以包埋不同的药物,并且药物不会从中逸出,但是足以使氧扩散出去。使得既能发挥杀灭肿瘤的作用,又不会释入血管,避免其它包囊化方法所引起副作用。设计中空胶囊的表面性质,引入特异性识别单元,增强攻击靶标的能力。解决目前光动力学疗法在药物的运输和释放方面的困难。通过体外细胞培养与动物实验,检测胶囊作为药物载体在生物体内的稳定性、生物相容性、可降解性,研究其被细胞摄取的效率和机理。调控中空胶囊或纳米管尺寸,使得纳米孔隙的药物载体能避开网状内皮系统(RES)细胞的吞噬及破坏。2.红血球替代物聚合物/血红蛋白纳米胶束(胶囊):2.1设计和合成带PEG链段并含有氨基、羧基或叁键等不同活性官能团的乳酸类两嵌段或三嵌段共聚物,并在嵌段共聚物上键合血红蛋白,测定血红蛋白的含量,进行键合物的组装,确保一个胶束或胶囊包括多个血红蛋白,血红蛋白处于有效保护之中,又保持与外界水环境的密切接触。2.2考察组装体中血红蛋白的氧气吸收和释放功能,考察分子参数和组装条件对携氧功能的影响,优化分子结构和组装工艺。2.3通过体外和动物体内试验,考察聚合物/血红蛋白胶束(胶囊)的安全性、血液相容性和在血液环境中的稳定性,确定聚合物/血红蛋白胶束(胶囊)的安全窗口、有效浓度范围、循环滞留时间、体内分布、代谢路径等,判断体内使用的可能性。3.规则纳米多孔薄膜及其生物功能:3.1依照传统胶体与界面化学研究方法,研究纳米尺度水溶性无机分子溶液的相行为、溶液有序聚集体的形成、性质、结构及聚集体结构的演变;探索这类4新型聚集体形成的驱动力和热力学稳定的本质。3.2具有磁性和对细菌响应的多金属氧酸盐如{Mn2Bi2W20}和表面活性剂相互作用、相行为及在水/空气界面上“规则纳米多孔薄膜”的构筑。3.3“规则纳米多孔薄膜”的生物兼容性和生物降解性研究,确定其细菌群(如大肠杆菌群)的强力繁殖的机理,制备细菌群高灵敏度传感器(探测),获得用于不同的细菌具有分辨和分离作用的规则纳米结构多孔膜。4.生物模板法合成新型纳米生物医用材料:1.1纳米孔隙材料:在自然生物物质(如纤维素和硅藻等)内表面以纳米级的精度沉积金属氧化物薄膜(如二氧化硅、二氧化钛等),以此薄膜为平台进一步进行功能纳米微粒及其他客体物质的组装,通过选择不同的客体物质以引进不同的功能。在生物物质表面沉积不同化学成分的有机(如聚合物)超薄膜或修饰以自组织单分子层,有效控制其物理性质。1.2纳米孔隙药物传输系统:将生物物质表面精确沉积的客体物质薄膜或自组织分子单层用于吸附组装生物大分子(如蛋白质、酶和核酸)或药物分子。自然生物材料的高表面积将导致更多的生物和药物分子被有效吸附,从而得到一种新型生物活性或药物活性材料。该仿生生物/药物系统作为生物传感器将具有极高的灵敏度,作为给药载体将具有理想的生物兼容性、稳定性和安全性。预期用于高灵敏度的疾病早期检测和针对不同疾病的药物传输和可控释放,将具体用于细胞试验和动物试验。5二、预期目标组织国内科研机构和“985工程”高等学校的科学家强强联合,通过对项目的实施,实现以下总体目标:完善和发展构筑纳米胶束、胶囊、中空管、多孔薄膜,以及生命/非生命物质多孔膜复合体的分子组装、生物模板合成和气/液界面相分离等技术,创造新的起始材料和组装单元,获得组成、结构和功能各异的新的组装体;认识上述各种组装过程的分子本质,掌握组装体结构、形态、尺寸和功能调控的关键技术;获得有临床实用价值的纳米抗癌药物新制剂、红血球替代物血红蛋白胶囊以及二维或三维的纳米器件和系统。在取得一批有显示度和有国际影响力的重要基础研究成果的同时,培养一批能够从事化学、物理、材料、生物与纳米技术交叉学科领域研究的创新型复合人才,建立面向生物医学应用的纳米材料、纳米器件和系统的研究基地,形成具有国际影响的研究团队,使该领域的研究在国际上有一席之地。五年预期目标1.利用各种不同的分子间弱相互作用及模板技术,构造生物兼容、生物降解的多功能化的纳米孔隙材料。通过控制组装的层数和组装条件,对组装的纳米孔隙材料的结构、形貌、渗透率、力学强度等重要参数进行精确控制。通过组装单元的选择,发展对外部条件(如光、电、磁、温度等)敏感和响应的智能纳米孔隙材料。优化组装的多功能化纳米孔隙材料包裹不同类型药物的方法和途径,获得最佳包埋的效率。对组装材料进行生物界面化修饰,实现包埋药物的靶向运输和可控释放,完成纳米孔隙材料的体外细胞试验,阐明药物的释放动力学与释放机理,建立并发展面向生物医学应用的新型纳米孔隙药物载体。2.设计并合成出带有能与血红蛋白反应的官能团的乳酸类嵌段共聚物,通过先键合后组装或先组装后键合等途径,获得血红蛋白处于内核/外壳界面附近的聚合物/血红蛋白纳米胶束或血红蛋白处于内水相的聚合物/血红蛋白纳米胶囊。考察嵌段共聚物的分子参数和组装条件对聚合物/血红蛋白纳米胶束或胶囊的氧气结合和释放功能的影响,优化聚合物结构和组装工艺条件,获得综合性能优异的聚合物/血红蛋白纳米胶束或胶囊。建立血液评价技术平台,完6成聚合物/血红蛋白纳米胶束或胶囊的体外和动物试验评价,对其在人体内使用的可能性做出判断。3.阐明纳米尺度无机分子聚集体形成的驱动力,发展多层次多尺度“规则纳米多孔薄膜”的可控制备方法,揭示其形成机制及胶体化学行为,阐明两亲性高分子和表面活性剂在其中的作用,确认此种制备方法的普适性,扩展可能使用的起始材料种类,探索其在细菌、病毒探测(菌群探测灵敏度)、繁殖和分离中的应用。实现在纳米层级的精度上以不同的客体基质(无机基质和有机、高分子基质)精确地复制自然物质的结构和形貌,系统建立达成该复制目标的化学及物理方法。完善在自然材料中固化生物大分子和药物分子的方法以制备具生物活性和药物活性的新型材料,构建有效的药物传输系统。初步完成针对不同疾病和创伤(如皮肤癌变、外伤等)的药物释放体系的设计和测试。本项目研究过程中,将在国内外权威或重要刊物上发表论文220篇左右,申请专利40项左右。培养一批从事纳米生物材料材料研究的人才,包括60名左右博士后、博士和硕士。7三、研究方案4.1学术思想:通过模拟生物体中生物分子的结构与功能,利用合成手段和组装技术制备一系列纳米生物材料,研究它们在生物体中的兼容性,作为药物支架如何担载和释放药物及在体外的稳定性,确定其作用机理和影响因素;探索组装的生物材料在生物体中的状态与排除功能,建立合成体系与生物体之间的联系、作用机制和代谢过程。4.2技术途径:本研究的技术途径为:通过分析总结纳米生物材料的合成、组装及在生物医学领域的应用的关键共性技术问题,提炼其中涵盖的关键科学问题;对科学问题分解开展研究,建立高性能纳米生物材料的设计制备理论基础和关键技术研究平台。4.3项目的创新点:基于自主设计和合成的起始材料,利用已知的和自己创建的纳米组装方法,实现从有机分子到无机分子,从小分子到高分子,从无生命体到有生命体的组装,组装体具有从零维到三维的结构,具有所需要的生物医用功能,这是本项目的基本创新点。各课题的创新点概括如下:1)利用自组装和层层组装技术,选用不同的组装单元与模板,制备新型的智能化纳米孔隙支架材料。特别是利用生物分子间的特殊相互作用和自组装功能,通过组装条件的变化,获得不同结构和功能的纳米孔隙结构,实现纳米孔隙材料在药物的包埋、运输与释放等生物医学领域的应用。2)将血红蛋白共价键合在两亲性可生物降解高分子上,进而组装成模拟红血球的血红蛋白/聚合物胶束或胶囊,血红蛋白得到有效保护,类似红血球的微环境保证了氧气交换的高效率。使用click反应等温和高效的偶联方式,有效避免了蛋白质分子在高温、有机溶剂等苛刻条件下的失活,保证了反应的专一性。与现有“红血球修饰法”相比,化学键合的血红蛋白稳定性好,不发生8单个血红蛋白分子的渗漏,从而减轻了肾脏、肝脏负担,避免了血压增高。与脂质体胶囊相比,聚合物胶束或胶囊的力学强度高,稳定性好,在血液循环的条件下

1 / 22
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功