l基于PLC的变频调速恒压供水系统毕业设计

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

毕业设计任务书基于PLC的变频调速恒压供水系统目录摘要第1章变频恒压供水的现况1.1国内外变频供水系统现状1.2变频供水系统的发展趋势第2章变频调速恒压供水分析2.1变频恒压供水的工艺调节过程介绍2.2调速系统的构建2.2.1调速原理2.2.2变频恒压供水频率变化分析2.3节能分析2.3.1水泵的基本参数和特性2.3.2水泵调速运行的节能原理第3章恒压供水系统3.1系统概述3.2控制系统的组成3.3恒压供水系统的机理及调速泵的调速原理3.3.1单台变频器控制单台水泵3.3.2恒压供水系统的工作原理3.3.3恒压供水系统3.4变频调速恒压供水系统的特点3.5变频器第4章可编程控制器PLC4.1可编程控制器PLC的定义4.2可编程控制器PLC的发展阶段及发展方向4.3控制系统的硬件设计4.4控制系统的软件设计4.4.1软件设计第5章PLC控制系统的设计5.1概述5.2输入输出分配5.2.1输入口5.2.2输出口5.2.3辅助触点5.3控制系统功能介绍5.4恒压供水系统的流程图5.5控制系统的可靠性及应用程序设计5.5.1程序的优化设计5.5.2应用程序的设计5.5.3故障检测程序的设计第6章触摸屏同步监控6.1概述6.2触摸屏工作的特点与应用领域6.3触摸屏指示灯同步监控程序设计6.3.1控制系统设计步骤6.3.2应用程序设计6.3.3同步监控设计第7章系统调试7.1变频器关键参数的设定7.2PLC的变频调速恒压供水系统调试7.3触摸屏同步监控测试参考文献摘要水是生命之源,人类生存和发展都离不开水。在通常的城市及乡镇供水中基本上都是靠供水站的电动机带动离心水泵,产生压力使管网中的自来水流动,把供水管网中的自来水送给用户。但供水机泵供水的同时,也消耗大量的能量,如果能在提高供水机泵的效率、确保供水机泵的可靠稳定运行的同时,降低能耗,将具有重要经济意义。近年来我国中小城市发展迅速,集中用水量急剧增加。据统计,从1990年到1998年,我国人均日生活用水量(包括城市公共设施等非生产用水)有175.7升增加到241.1升,增长了37.2%,与此同时我国城市家庭人均日生活用水量也在逐年提高。钦州市是广西壮族自治区的港口城市,随着城区的扩大和工农业的发展,钦州市城区用水量急剧上升,城区居民生活用水和工业用水总量从1994年的1700多万吨激增到2000年的7500多万吨。在用水量高峰期时供水量普遍不足,造成城市公用管网水压浮动较大。由于每天不同时段用水对供水的水位要求变化较大,仅仅靠供水厂值班人员依据经验进行人工手动调节很难及时有效的达到目的。这种情况造成用水高峰期时水位达不到要求,供水压力不足,用水低峰期时供水水位超标,压力过高,不仅十分浪费能源而且存在事故隐患(例如压力过高容易造成爆管事故)。对于大多数采用供水企业来说,传统供水机泵存在日常运行费用太高,供水成本居高不下,单位供水的能耗偏大的问题,寻求供水与能耗之间的最佳性价比,是困扰企业的一个长期问题。目前各供水厂的供水机泵设计按最大扬程与最大流量这一最不利条件设计,水泵大多时间在设计效率以下运行。导致电动机与水泵之间常常出现大马拉小车问题(如图1.1)。因此,如何解决供水与能耗之间的不平衡,寻求提高供水效率的整体解决方案,是各供水解水企业关心的焦点问题之一。变频调速技术以其显著的节能效果和稳定可靠的控制方式,在风机、水泵、空气压缩机、制冷压缩机等高能耗设备上广泛应用。利用变频技术与自动控制技术相结合,在中小型供水企业实现恒压供水,不仅能达到比较明显的节能效果,提高供水企业效率,更能有效保证从水系统的安全可靠运行.变频恒水压供水系统集变频技术、电气传动技术、现代控制技术于一体。采用该系统进行供水可以提高供水系统的稳定性和可靠性,方便地实现供水系统的集中管理与监控;同时可达到良好的节能性,提高供水效率。所以研究设计基于PLC变频调速的恒定水压供水系统(简称变频恒压供水,如图1.2),对于提高企业效率以及人民的生活水平,同时降低能耗等方面具有重要的现实意义。1.1PLC的变频调速恒压供水系统的目的和意义恒压供水方式技术先进、水压恒定、操作方便、运行可靠、节约电能、自动化程度高,在泵站供水中可完成以下功能:(1)维持水压恒定;(2)控制系统可手动/自动运行;(3)多台泵自动切换运行;(4)系统睡眠与唤醒。当外界停止用水时,系统处于睡眠状态,直至有用水需求时自动唤醒;(5)在线调整PID参数;(6)泵组及线路保护检测报警、信号显示等。关键词:变频调速;恒压供水;PLC第一章1.变频恒压供水的现况1.1国内外变频供水系统现状恒压供水是在变频调速技术的发展之后逐渐发展起来的。在早期,由于国外生产的变频器的功能主要限定在频率控制、升降速控制、正反转控制、起制动控制、压频比控制及各种保护功能。应用在变频恒压供水系统中,变频器仅作为执行机构,为了满足供水量大小需求不同时,保证管网压力恒定,需在变频器外部提供压力控制器和压力传感器,对压力进行闭环控制。从查阅的资料的情况来看,国外的恒压供水工程在设计时都采用一台变频器只带一台水泵机组的方式,几乎没有用一台变频器拖动多台水泵机组运行的情况,因而投资成本高。随着变频技术的发展和变频恒压供水系统的稳定性、可靠性以及自动化程度高等方面的优点以及显著的节能效果被大家发现和认可后,国外许多生产变频器的厂家开始重视并推出具有恒压供水功能的变频器,像日本SAMC公司,就推出了恒压供水基板,备有“变频泵固定方式”,“变频泵循环方式”两种模式。它将PID调节器和PLC可编程控制器等硬件集成在变频器控制基板上,通过设置指令代码实现PLC和PID等电控系统的功能,只要搭载配套的恒压供水单元,便可直接控制多个内置的电磁接触器工作,可构成最多7台电机(泵)的供水系统。这类设备虽微化了电路结构,降低了设备成本,但其输出接口的扩展功能缺乏灵活性,系统的动态性能和稳定性不高,与别的监控系统(如BA系统)和组态软件难以实现数据通信,并且限制了带负载的容量,因此在实际使用时其范围将会受到限制。目前国内有不少公司在做变频恒压供水的工程,大多采用国外的变频器控制水泵的转速,水管管网压力的闭环调节及多台水泵的循环控制,有的采用可编程控制器(PLC)及相应的软件予以实现;有的采用单片机及相应的软件予以实现。但在系统的动态性能、稳定性能、抗扰性能以及开放性等多方面的综合技术指标来说,还远远没能达到所有用户的要求。艾默生电气公司和成都希望集团(森兰变频器)也推出恒压供水专用变频器(5.5kW-22kW),无需外接PLC和PID调节器,可完成最多4台水泵的循环切换、定时起、停和定时循环。该变频器将压力闭环调节与循环逻辑控制功能集成在变频器内部实现,但其输出接口限制了带负载容量,同时操作不方便且不具有数据通信功能,因此只适用于小容量,控制要求不高的供水场所。变频供水系统目前正在向集成化、维护操作简单化方向发展,在国内外,专门针对供水的变频器集成化越来越高,很多专用供水变频器集成了PLC或PID,甚至将压力传感器也融入变频组件。同时维护操作也越来越简明显偏高,维护成本也高于国内产品。目前国内有不少公司在从事进行变频恒压供水的研制推广,国产变频器主要采用进口元件组装或直接进口国外变频器,结合PLC或PID调节器实现恒压供水,在小容量、控制要求的变频供水领域,国产变频器发展较快,并以其成本低廉的优势占领了相当部分小容量变频恒压供水市场。目前在国内外变频调速恒压供水控制系统的研究设计中,对于能适应不同的用水场合,结合现代控制技术、网络和通讯技术同时兼顾系统的电磁兼容性(EMC),的变频恒压供水系统的水压闭环控制研究得不够。因此,有待于进一步研究改善变频恒压供水系统的性能,使其能被更好的应用于生活、生产实践。1.2变频供水系统的发展趋势变频供水系统目前正在向集成化、维护操作简单化方向发展目前国内有不少公司在从事进行变频恒压供水的研制推广,国产变频器主要采用进口元件组装或直接进口国外变频器,结合PLC或PID调节器实现恒压供水,在小容量、控制要求的变频供水领域,国产变频器发展较快,并以其成本低廉的优势占领了相当部分小容量变频恒压供水市场。但在大功率大容量变频器上,国产变频器有待于进一步改进和完善。第二章2.变频调速恒压供水分析2.1变频恒压供水的工艺调节过程介绍变频恒压供水所用水泵主要是离心泵,而普通离心泵如图2.1所示:叶轮安装在泵壳2内,并紧固在泵轴3上,泵轴由电机直接带动,泵壳中央有一液体吸入口4与吸入管5连接,液体经底阀6和吸入管进入泵内,泵壳上的液体排出口8排出管9连接。在泵启动前,泵壳内灌满被输送的液体:启动后,叶轮由轴带动高速转动,叶片间的液体也必须随着转动。在离心力的作用下,液体从叶轮中心被抛向外缘并获得能量,以高速离开叶轮外缘进入蜗形泵壳。在蜗壳中,液体由于流道的逐渐扩大而减速,又将部分动能转变为静压能,最后以较高的压力流入排出管道,送至需要场所。液体由叶轮中心流向外缘时,在叶轮中心形成了一定的真空,由于贮槽液面上方的压力大于泵入口处的压力,液体便被连续压入叶轮中。可见,只要叶轮不断地转动,液体便会不断地被吸入和排出。2.2调速系统的构建水泵的调速运行构建,是指水泵在运行中根据运行环境的需要,人为的改变运行工作状况点(简称工况点)的位置,使流量、扬程、轴功率等运行参数适应新的工作状况的需要。水泵的工况点是由水泵的性能曲线和管网的特性曲线的交点确定的。因此,只要这两条曲线之一的形状或位置有了改变,工况点的位置也就随之改变。所以,水泵的调节从原理上讲是通过改变水泵的性能曲线或管网特性曲线或二者同时改变来实现的。水泵的调节方式与节能的关系非常密切,过去普遍采用改变阀门或挡板开度的节流调节方式,即改变装置管网的特性曲线进行调节。这种调节方式虽然简便易行,但往往造成很大的能量损失。大量的统计调查表明,一些在运行中需要进行调节的水泵,其能量浪费的主要原因,往往是由于采用不合适的调节方式。因此,研究并改进它们的调节方式,是节能最有效的途径和关键所在。气水泵的调节方式可分为恒速调节与变速调节系统。详细划分如下:目前常见的调节方法有节流调节、动叶调节、改变泵的运行台数调节、液力祸合器调节、绕线式异步电动机的串极调速、变极调速、变频调速等2.2.1调速原理水泵的恒速调节主要有节流调节、动叶调节、改变泵的运行台数调节三种.(1)节流调节节流调节是在水泵的出口或进口管路上装设阀门或挡板,通过改变阀门或挡板的开度,使装置需要扬程曲线发生变化,从而导致水泵工作点位置的变化。节流调节优点是调节简单、可靠、方便,且调节装置的初投资很少,故以前各种离心泵多采用这种调节方式。缺点是能量损失很大,目前正逐渐被其它调节方式所取代。(2)动叶调节采用动叶调节的水泵,在泵的轮毅内部安装动叶调节机构,从而使动叶调节得以实现。对于大型的泵,可以采用液压传动调节。动叶调节的优点是:在调节过程中其效率变化很小,能在较大范围保持高效率。缺点是:动叶调节机构复杂,控制自动化程度低;成本高,通常适用大容量水泵,对中小供水厂的水泵通常不适用。(3)改变机泵运行台数调节改变机泵运行台数调节是根据不同的流量要求,采用不同数量和型号的机泵进行并联运行,来满足供水量要求.优点是:它不改变电机和水泵的电气及机械结构,在水泵台数众多、搭配合理的情况下,可以达到较好的调节效果。缺点是:不能实现连续调节、需要大量的机泵进行合理搭配、随着供水量的变化要不断启停电机;电能损失较大。因此,目前此种方法虽大量使用,但正逐步被新的流量调节方式取代。2.2.2变频恒压供水频率变化分析由于变频恒压供水基本上都采用了变频启动,启动频率低,启动电流小,因此,除了对供水机泵和供水管网有保护作用,对供水电机和电网也有良好的保护作用。供水系统电机直接启动与变频启动的对比表如表2.2所示。2.3节能分析恒压供水系统的基本特性。根据扬程特性曲线和管阻特性曲线可以看出用水流量和供水流量处于平衡状态时系统稳定运行。在供水系统中采用变频调速是由于水泵的功率与转速的立方成正比,所以调速控制方式要比

1 / 30
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功