Matlab曲线拟合工具箱zy搜集整理1插值...........................................................................................................................................11.1一维插值interp1...............................................................................................................11.2二维数据内插值interp2...................................................................................................31.3三维插值interp3...............................................................................................................41.4快速Fourier算法作一维插值interpft............................................................................51.5命令5griddata...................................................................................................................51.6三次样条数据插值spline.................................................................................................61.7n维数据插值interpn........................................................................................................71.8生成三位图形矩阵数据meshgrid....................................................................................81.9多维函数数据产生函数ndgrid........................................................................................82拟合...........................................................................................................................................92.1多项式曲线拟合ployfit....................................................................................................92.2多项式曲线求值函数polyval.........................................................................................102.3多项式曲线拟合的评价和置信区间函数polyconf.......................................................102.4稳健回归函数robust.......................................................................................................112.5向自定义函数拟合nlinfit...............................................................................................122.6拟合工具cftool...............................................................................................................133回归分析.................................................................................................................................143.1多元线性回归分析函数regress.....................................................................................151插值Matlab中插值函数汇总和使用说明1.1一维插值interp1MATLAB中的插值函数为interp1,其调用格式为:yi=interp1(x,y,xi,'method')其中x,y为插值点,yi为在被插值点xi处的插值结果;x,y为向量,'method'表示采用的插值方法,MATLAB提供的插值方法有几种:'method'是最邻近插值,'linear'线性插值;'spline'三次样条插值;'cubic'立方插值.缺省时表示线性插值注意:所有的插值方法都要求x是单调的,并且xi不能够超过x的范围。例如:在一天24小时内,从零点开始每间隔2小时测得的环境温度数据分别为12,9,9,10,18,24,28,27,25,20,18,15,13,推测中午12点(即13点)时的温度.x=0:2:24;y=[129910182428272520181513];a=13;y1=interp1(x,y,a,'spline')结果为:27.8725若要得到一天24小时的温度曲线,则:xi=0:1/3600:24;yi=interp1(x,y,xi,'spline');plot(x,y,'o',xi,yi)命令1interp1功能一维数据插值(表格查找)。该命令对数据点之间计算内插值。它找出一元函数f(x)在中间点的数值。其中函数f(x)由所给数据决定。x:原始数据点Y:原始数据点xi:插值点Yi:插值点格式(1)yi=interp1(x,Y,xi)返回插值向量yi,每一元素对应于参量xi,同时由向量x与Y的内插值决定。参量x指定数据Y的点。若Y为一矩阵,则按Y的每列计算。yi是阶数为length(xi)*size(Y,2)的输出矩阵。(2)yi=interp1(Y,xi)假定x=1:N,其中N为向量Y的长度,或者为矩阵Y的行数。(3)yi=interp1(x,Y,xi,method)用指定的算法计算插值:’nearest’:最近邻点插值,直接完成计算;’linear’:线性插值(缺省方式),直接完成计算;’spline’:三次样条函数插值。对于该方法,命令interp1调用函数spline、ppval、mkpp、umkpp。这些命令生成一系列用于分段多项式操作的函数。命令spline用它们执行三次样条函数插值;’pchip’:分段三次Hermite插值。对于该方法,命令interp1调用函数pchip,用于对向量x与y执行分段三次内插值。该方法保留单调性与数据的外形;’cubic’:与’pchip’操作相同;’v5cubic’:在MATLAB5.0中的三次插值。对于超出x范围的xi的分量,使用方法’nearest’、’linear’、’v5cubic’的插值算法,相应地将返回NaN。对其他的方法,interp1将对超出的分量执行外插值算法。(4)yi=interp1(x,Y,xi,method,'extrap')对于超出x范围的xi中的分量将执行特殊的外插值法extrap。(5)yi=interp1(x,Y,xi,method,extrapval)确定超出x范围的xi中的分量的外插值extrapval,其值通常取NaN或0。例1x=0:10;y=x.*sin(x);xx=0:.25:10;yy=interp1(x,y,xx);plot(x,y,'kd',xx,yy)例2year=1900:10:2010;product=[75.99591.972105.711123.203131.669150.697179.323203.212226.505249.633256.344267.893];p1995=interp1(year,product,1995)x=1900:1:2010;y=interp1(year,product,x,'pchip');plot(year,product,'o',x,y)复制代码插值结果为:p1995=252.98851.2二维数据内插值interp2命令2interp2功能二维数据内插值(表格查找)格式(1)ZI=interp2(X,Y,Z,XI,YI)返回矩阵ZI,其元素包含对应于参量XI与YI(可以是向量、或同型矩阵)的元素,即Zi(i,j)←[Xi(i,j),yi(i,j)]。用户可以输入行向量和列向量Xi与Yi,此时,输出向量Zi与矩阵meshgrid(xi,yi)是同型的。同时取决于由输入矩阵X、Y与Z确定的二维函数Z=f(X,Y)。参量X与Y必须是单调的,且相同的划分格式,就像由命令meshgrid生成的一样。若Xi与Yi中有在X与Y范围之外的点,则相应地返回nan(NotaNumber)。(2)ZI=interp2(Z,XI,YI)缺省地,X=1:n、Y=1:m,其中[m,n]=size(Z)。再按第一种情形进行计算。(3)ZI=interp2(Z,n)作n次递归计算,在Z的每两个元素之间插入它们的二维插值,这样,Z的阶数将不断增加。interp2(Z)等价于interp2(z,1)。(4)ZI=interp2(X,Y,Z,XI,YI,method)用指定的算法method计算二维插值:’linear’:双线性插值算法(缺省算法);’nearest’:最临近插值;’spline’:三次样条插值;’cubic’:双三次插值。例3:[X,Y]=meshgrid(-3:.25:3);Z=peaks(X,Y);[XI,YI]=meshgrid(-3:.125:3);ZZ=interp2(X,Y,Z,XI,YI);surfl(X,Y,Z);holdon;surfl(XI,YI,ZZ+15)axis([-33-33-520]);shadingflatholdoff复制代码例4:years=1950:10:1990;service=10:10:30;wage=[150.697199.592187.625179.323195.072250.287203.212179.092322.767226.505153.706426.730249.633120.281598.243];w=interp2(service,years,wage,15,1975)复制代码插值结果为:w=190.6288复制代码1.3三维插值interp3命令3interp3功能三维数据插值(查表)格式(1)VI=interp3(X,Y,Z,V,XI,YI,ZI)找出由参量X,Y,Z决